Is this limit defined or undefined? $$\lim\limits_{x \to 0+} \left(\sqrt{\frac{1}{x}+2}-\sqrt{\frac{1}{x}}\right)$$ When I apply the rule of difference of limits, it's undefined. But, when I manipulate it, it gives me zero. And the graph of the function indicates it's defined on the right side.
By multiplying by $\frac{\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}}}{\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}}}$: $$\lim\limits_{x \to 0+} \frac{\left( \sqrt{\frac{1}{x}+2}-\sqrt{\frac{1}{x}} \, \right) \left(\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}} \, \right)}{\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}}}$$
$$=\lim\limits_{x \to 0+} \frac{\frac{1}{x}+2-\frac{1}{x}}{\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}}}$$ $$=\lim\limits_{x \to 0+} \frac{2}{\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}}}$$ Then, we multiply by $\frac{\sqrt{x}}{\sqrt{x}}$: $$=\lim\limits_{x \to 0} \frac{2\sqrt{x}}{\sqrt{1+2x}+1}$$ And, we substitute: $$=\frac{2\sqrt{0}}{\sqrt{1+2\times0}+1} = 0$$ So, is this limit defined or not? and what's my error, if any?