5

Why does:

$$\sum_{n=0}^\infty \frac{n!}{(2n+1)!!}$$

converge to $\frac{\pi}{2}$?

I'm honestly not sure where to start.

Tom Himler
  • 2,294
  • Not sure how much that'll help, but you can start by expanding out: $$\begin{align} (2n+1)!! &= (2n+1)(2n-1)\dots 3\cdot 1 = \frac{(2n+1)(2n)(2n-1)\dots 3\cdot 2\cdot 1}{(2n)(2n-2)\cdots2\cdot1} \&= \frac{(2n+1)!}{2^n n(n-1 )\cdots1} = \frac{(2n+1)!}{2^n n!}\tag{1} \end{align}$$ From there, you can get things like $$ \sum_{n=0}^\infty \frac{n!}{(2n+1)!!} = \sum_{n=0}^\infty \frac{n!^2}{(2n+1)!}2^n = \sum_{n=0}^\infty \frac{2^n}{\binom{2n}{n}(2n+1)} $$ – Clement C. Nov 11 '17 at 00:30
  • A slightly different take on the answer someone gave: can you figure out what the series $\sum_{n=0}^\infty \frac{n!}{(2n+1)!!}x^n$ represents? Can you evaluate that at $x=1$? – Steven Stadnicki Nov 11 '17 at 00:31
  • @StevenStadnicki I am not entirely sure, given the closed-form expression of that function, that it'll lead to any immediate insight (?). – Clement C. Nov 11 '17 at 00:33

3 Answers3

12

$$\sum_{n\geq 0}\frac{n!}{(2n+1)!!}=\sum_{n\geq 0}\frac{2^n n!^2}{(2n+1)\cdot (2n)!}=\sum_{n\geq 0}\frac{2^n}{(2n+1)\binom{2n}{n}}=\sum_{n\geq 0}\frac{2^n \Gamma(n+1)^2}{\Gamma(2n+2)}$$ can be written, through Euler's Beta function, also as $$ \sum_{n\geq 0}2^n\int_{0}^{1}x^n(1-x)^n\,dx = \int_{0}^{1}\frac{dx}{1-2x(1-x)}\stackrel{\text{symmetry}}{=}2\int_{0}^{1/2}\frac{2\,dx}{1+(2x-1)^2} $$ or, through the substitution $x=\frac{1-z}{2}$, as $$ \int_{0}^{1}\frac{2\,dz}{1+z^2}=2\arctan(1)=\color{red}{\frac{\pi}{2}}.$$


As an alternative, you may notice your series (related to the Taylor series of the arcsine function) is half the Euler transform of Gregory series. See pages 20-21 of my notes, for instance.

Jack D'Aurizio
  • 353,855
0
  1. Apply Euler transform to Leibniz fomula for $\pi$

Leibniz fomula is $$ 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ~..~ = \frac{\pi}{4} $$

Euler transform is $$ a_0 - a_1 + a_2 - a_3 + ~..~ = \frac{a_0}{2} - \frac{\Delta a_0}{2^2} + \frac{\Delta^2 a_0}{2^3} - \frac{\Delta^3 a_0}{2^4} + ~.. $$ where $\Delta a_0 = a_1 - a_0$, $\Delta^2 a_0 = (a_2 - a_1) - (a_1-a_0) $,$\Delta^3a_0 = ((a_3-a_2)-(a_2-a_1)) - ((a_2-a_1)-(a_1-a_0))$, ..etc.

Proof: Consider shift operator $T a_0 = a_1$, and difference operator $\Delta a_0 = a_1-a_0$. Then $\Delta = T-1$. Therefore \begin{eqnarray} a_0 - a_1 + a_2 - a_3 + ~..~ &=& (1-T+T^2-T^3+~..)a_0 \\ &=& \frac{1}{1+T} a_0 = \frac{1}{2+\Delta} a_0\\ &=& \left(\frac{1}{2} - \frac{\Delta}{2^2} + \frac{\Delta^2}{2^3} - ~..\right) a_0 \end{eqnarray}

Applying this to Leibniz fomula. \begin{eqnarray} a_0 &=& 1 \\ \Delta a_0 &=& - \frac{2 }{1\cdot 3} \\ \Delta^2 a_0 &=& \frac{2 \cdot 4}{1\cdot 3 \cdot 5} \\ \Delta^3 a_0 &=& - \frac{2 \cdot 4 \cdot 6}{1\cdot 3 \cdot 5 \cdot 7} \\ .. \end{eqnarray}

\begin{eqnarray} 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ~..~ = \frac{1}{2} \left(1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5\cdot 7} + ~..\right) = \frac{\pi}{4} \end{eqnarray} Thus $$ \sum_{n=0}^\infty \frac{n!}{(2n+1)!!} = \frac{\pi}{2} $$

  1. Use beta function related method. See $$ \int_0^1 (1-x^2)^n dx = \frac{2^n n!}{(2n+1)!!} $$ Proof: \begin{eqnarray} (x (1-x^2)^n)' &=& (1-x^2)^n - 2n x^2(1-x^2)^{n-1} \\ &=& (1-x^2)^n + 2n (1-x^2)^{n-1} - 2n x^2(1-x^2)^{n-1} - 2n (1-x^2)^{n-1} \\ &=&(1+2n)(1-x^2)^n - 2n (1-x^2)^{n-1} \end{eqnarray} Therefore \begin{eqnarray} \int_0^1 (1-x^2)^n dx = \frac{2 n}{2n+1}\int_0^1 (1-x^2)^{n-1} dx \end{eqnarray} Then the result readily follows. Then

\begin{eqnarray} \sum_{n=0}^\infty \frac{n!}{(2n+1)!!} &=& \int_0^1 dx \left(1 + \frac{1-x^2}{2} + \frac{(1-x^2)^2}{4} + \frac{(1-x^2)^3}{8} + ~..\right) \\ &=& \int_0^1 \frac{1}{1-\frac{1-x^2}{2}} dx \\ &=& \int_0^1 \frac{2dx}{1+x^2} = \frac{\pi}{2} \end{eqnarray}

-1

What about finding a function $f$ for which there exists an $x$ such that $f(x)=\frac{\pi}{2}$, calculating its Taylor series and using the Euler Transform for series?

Start with $a\tan(1)=\frac{\pi}{4}$ and search for the Taylor series of $a\tan(x)$: $$a\tan(x)=f(x) = \sum _{n=0}^{\infty } \frac{(-1)^n}{(2n+1)}x^n.$$

Looking at the Euler transform gives us $$ \left(\frac{1}{1-x}\right)f\left(\frac{x}{1-x}\right) = \sum _{n=0}^{\infty } \left(\sum _{k=0}^n {n \choose k}\frac{(-1)^k}{(2k+1)}\right)x^n.$$

Using that $$\sum _{k=0}^n {n \choose k}\frac{(-1)^k}{(2k+1)} = \frac{(2n)!!}{(2n+1)!!}$$

We see that the series $$ \sum_{n=0}^{\infty} \frac{n!}{(2n+1)!!} =\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} \left(\frac{1}{2}\right)^n = 2f(1)=\frac{\pi}{2}$$

amWhy
  • 209,954
Verbe
  • 362
  • 1
    Removing my downvote after the complete overhaul of the answer, but... seriously, the first sentence is not useful at all. It does not help in any way in figuring out what to do next, if one does not already know. – Clement C. Nov 11 '17 at 05:23
  • You're right. I will do better in the future :-) Thanks for removing the downvote. – Verbe Nov 11 '17 at 13:10