I want to find the non-zero eigen-values of a matrix of the following form
\begin{align} M = \begin{bmatrix} \mathbf{0}_{n_1 \times n_1} & \mathbf{0}_{n_1 \times n_2} & \mathbf{0}_{n_1 \times n_3} \\ \mathbf{A}_{n_2 \times n_1} & \mathbf{B}_{n_2 \times n_2} & \mathbf{C}_{n_2 \times n_3} \\ \mathbf{0}_{n_3 \times n_1} & \mathbf{0}_{n_3 \times n_2} & \mathbf{0}_{n_3 \times n_3} \\ \end{bmatrix} \end{align} where the subscripts indicate the size of the corresponding block matrix, that is $\mathbf{A}_{n_2 \times n_1}$ is a $n_2 \times n_1$ matrix. My guess is that eigen-values of $M$ include $n_1 + n_3$ zeros and eigenvalues of $\mathbf{B}$. For simple examples, this intuition is correct, but I want to know whether this is correct for the block matrix $M$ described above? Any suggestion?