Let $I = [0,\ n],\ A = [a,\ b] : A \subseteq I$
Also, $0 \leq a \leq b \leq n$ and $a, b, n \in \mathbb{N}$.
I'll choose a real value $x$ uniformly out of $I$. What is the probability of the interval $B = [x, x + L]$ be completely inside the interval $A$, i.e $B \subseteq A$? $L$ is a given constant.
$x \in \mathbb{R}_{\ge 0},\ 0 \leq x \leq \ n$,
$\ L \in \mathbb{N},\ 0 < L \leq N$.