There is no general way.
Rather, there is a variety of known methods and tricks which apply to various types of diophantine equations, and which give you a set of potential strategies. Experience and pattern matching provides the intuition as to which methods are likely to be useful for a given diophantine equation.
For the given equation, as shown below, analyzing it mod $3$ allows a key reduction . . .
Suppose there is a solution $(x,y,u,v)$ such that $x,y,u,v$ are integers, not all zero.
Of all such solutions, choose one such that $x^2 + y^2$ is least.
Since $x,y,u,v$ are not all zero, it follows that $x^2 + y^2$ is a positive integer.
Note that squares are congruent to $0$ or $1$ mod $3$.
\begin{align*}
\text{Then}\;\;&x^2 + y^2 = 3(u^2+v^2)\\[4pt]
\implies\;&3|(x^2 + y^2)\\[4pt]
\implies\;&x^2 + y^2 \equiv 0\;(\text{mod}\;3)\\[4pt]
\implies\;&x^2 \equiv 0\;(\text{mod}\;3)\;\;\text{and}\;\;y^2 \equiv 0\;(\text{mod}\;3)\\[4pt]
\implies\;&3|x\;\,\text{and}\;\,3|y\\[4pt]
\implies\;&9|x^2\;\,\text{and}\;\,9|y^2\\[4pt]
\implies\;&9|(x^2 + y^2)\\[4pt]
\implies\;&9|\bigl(3(u^2 + v^2)\bigr)\\[4pt]
\implies\;&3|(u^2 + v^2)\\[4pt]
\implies\;&u^2 + v^2 \equiv 0\;(\text{mod}\;3)\\[4pt]
\implies\;&u^2 \equiv 0\;(\text{mod}\;3)\;\;\text{and}\;\;v^2 \equiv 0\;(\text{mod}\;3)\\[4pt]
\implies\;&3|u\;\,\text{and}\;\,3|v\\[4pt]
\end{align*}
Hence we can write
$$
\begin{cases}
x = 3x_1
\qquad\;\;\;\;
\\[4pt]
y = 3y_1\\[4pt]
u = 3u_1\\[4pt]
v = 3v_1\\
\end{cases}
$$
for some integers $x_1,y_1,u_1,v_1$.
But then
\begin{align*}
&x^2 + y^2 = 3(u^2 + v^2)\\[4pt]
\implies\;&(3x_1)^2 + (3y_1)^2 = 3((3u_1)^2 + (3v_1)^2)\\[4pt]
\implies\;&x_1^2 + y_1^2 = 3(u_1^2 + v_1^2)\\[4pt]
\end{align*}
so we have a solution $(x_1,y_1,u_1,v_1)$ with
$$x_1^2 + y_1^2 < x^2 + y^2$$
contrary to the choice of $(x,y,u,v)$.
It follows that the given equation has no nontrivial integer solutions.