$$ \begin{bmatrix} 3 & 2 & -2 \\ 1 & 1 & -1 \\ -1 & 2 & k \\ \end{bmatrix} $$
Find the values k for which rank(A) = 3 From what I have tried myself, I have brought it down to row-echelon form where it looks something like this:
$$ \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & k+2 \\ \end{bmatrix} $$
Through various row operations, but I seem to be stuck on whether or not I'm doing the right thing. Thanks!
To start: $$ \begin{bmatrix} 3 & 2 & -2 \\ 1 & 1 & -1 \\ -1 & 2 & k \\ \end{bmatrix} $$ Interchanging Rows 1 and 2.
$$ \begin{bmatrix} 1 & 1 & -1 \\ 3 & 2 & -2 \\ -1 & 2 & k \\ \end{bmatrix} $$
then, Row 2 minus 3 times Row 1 and Row 3 plus Row 1.
$$ \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 3 & k-1 \\ \end{bmatrix} $$
then, multiply Row 2 by (-1)
$$ \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 3 & k-1 \\ \end{bmatrix} $$
Finally, Row 3 minus 3 times Row 2.
$$ \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & k+2 \\ \end{bmatrix} $$