Actually the roots of $f$ are $\pm \sqrt{2}\pm\sqrt{3}$, so the splitting field is exactly $K$.
For the Galois group, consider the convolutions $\sigma\in \mathrm{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{3})) \colon \sqrt{2}\mapsto -\sqrt{2}$ and $\tau\in \mathrm{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2}))\colon \sqrt{3}\mapsto -\sqrt{3}$. Both of them are elements in $\mathrm{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ of order 2. Here is a more explicit expression
$$\begin{array}{c}
\sigma\colon \pm\sqrt{2}\pm\sqrt{3}\mapsto \mp\sqrt{2}\pm\sqrt{3}\\
\tau\colon \pm\sqrt{2}\pm\sqrt{3}\mapsto \pm\sqrt{2}\mp\sqrt{3}\\
\sigma\tau=\tau\sigma\colon \pm\sqrt{2}\pm\sqrt{3}\mapsto \mp\sqrt{2}\mp\sqrt{3}\\
\end{array}
$$
You can also find that the Galois group $\{1,\sigma,\tau,\sigma\tau\}$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$.