Suppose $d'(x,y)= \frac{d(x,y)}{1+d(x,y)}$ for $x,y \in X$ and I want to prove $d$ and $d'$ are equivalent metrics on $X$.
I would show $$\lim_{n\rightarrow\infty}d(x_n,x)=0 \quad\Longleftrightarrow\quad \lim_{n\rightarrow\infty}d'(x_n,x)=0.$$
To prove $\lim_{n\rightarrow\infty}d'(x_n,x)=0 \Rightarrow \lim_{n\rightarrow\infty}d(x_n,x)=0$, is it valid to say:
if $0=\lim_{n\rightarrow\infty}d'(x_n,x)=\frac{\lim_{n \rightarrow > \infty}d(x_n,x)}{1+\lim_{n \rightarrow \infty}d(x_n,x)}$,
then $\lim_{n \rightarrow \infty}d(x_n,x)=0$.
If it's invalid, what am I doing wrong?
Thanks!