$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{N \in \mathbb{N}_{\ \geq\ 1}\,}$:
\begin{align}
&\bbox[10px,#ffd]{\sum_{n = 1}^{N}
{H_{n}^{2} \over n\pars{n + 1}}} =
\sum_{n = 1}^{N}{H_{n}^{2} \over n} -
\sum_{n = 1}^{N}{H_{n}^{2} \over n + 1}
\\[5mm] = &\
\sum_{n = 1}^{N}{H_{n}^{2} \over n} -
\sum_{n = 2}^{N + 1}{H_{n - 1}^{2} \over n}
\\[5mm] = &\
\sum_{n = 1}^{N}{H_{n}^{2} \over n} -
\sum_{n = 1}^{N}{H_{n}^{2} - 2H_{n}/n + 1/n^{2} \over n} -
{H_{N}^{2} \over N + 1}
\\[5mm] \stackrel{\mrm{as}\ N\ \to\ \infty}{\Huge \to}\,\,\, &\
2\sum_{n = 1}^{\infty}H_{n}\
\overbrace{\bracks{-\int_{0}^{\infty}\ln\pars{x}x^{n - 1}\,\dd x}}
^{\qquad\ds{1 \over n^{2}}}\ -\
\overbrace{\sum_{n = 1}^{\infty}{1 \over n^{3}}}^{\ds{\zeta\pars{3}}} \\[5mm] = &\
-2\int_{0}^{1}\ln\pars{x}\
\overbrace{\sum_{n = 1}^{\infty}H_{n}\
x^{n}}^{\ds{-\,{\ln\pars{1 - x} \over 1 - x}}}\,{\dd x \over x} -
\zeta\pars{3}
\\[5mm] = &\
2\int_{0}^{1}{\ln\pars{x}\ln\pars{1 - x} \over 1 - x}\,\dd x
\\[2mm] + &\
2\int_{0}^{1}{\ln\pars{x}\ln\pars{1 - x} \over x}\,\dd x
-
\zeta\pars{3}
\\[5mm] = &\
4\int_{0}^{1}{\ln\pars{x}\ln\pars{1 - x} \over x}\,\dd x
-
\zeta\pars{3}
\\[5mm] = &\
-4\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln\pars{x}\,\dd x
-
\zeta\pars{3}
\\[5mm] = &\
4\int_{0}^{1}\ \overbrace{\mrm{Li}_{2}\pars{x} \over x}
^{\ds{\mrm{Li}_{3}'\pars{x}}}\ \,\dd x
-
\zeta\pars{3} =
\bbx{\large 3\zeta\pars{3}} \\ &
\end{align}