I am looking to prove that the following function from the non empty group $X$ is a metric with $d$ already being a metric:
$$e(a,b)=\frac{d(a,b)}{1+d(a,b)} \ \text{where} \ a,b\in X$$
But I am not sure how to proceed with such equations.
UPDATE:
From the comments posted so far, I interpreted the following:
$$d(a,b) \geq 0$$ $$e(a,b) \geq 0 \implies \frac{d(a,b)}{1+d(a,b)} \implies d(a,b) \geq 0 \Rightarrow \text{true}$$
$$d(a,b) = 0 \implies \frac{d(a,b)}{1+d(a,b)} = 0\implies d(a,b) = 0 \implies a=b$$
$$d(a,b)=d(b,a) \implies e(a,b) = e(b,a) \implies \frac{d(a,b)}{1+d(a,b)} = \frac{d(b,a)}{1+d(b,a)}$$
$$d(a,c) \leq d(a,b) + d(c,d) \implies e(a,c) \leq e(a,b) + e(b,c) \implies \frac{d(a,c)}{1+d(a,c)} \leq \frac{d(a,b)}{1+d(a,b)} + \frac{d(b,c)}{1+d(b,c)}$$
Am I following the right path?