1

QUESTION: \begin{equation*} \dbinom{n+m+1}{n}=\sum_{k=0}^n \dbinom{r+k}{k} \dbinom{m+n-r-k}{n-k} \end{equation*} where $n, m, r \geq 0$

I tried proving using binomial coefficient formula $\big[\dbinom{n}{k}=\frac{n!}{k!(n-k)!}\big]$, but dont think its possible with summation, however if it is would it work? Maybe lattice paths would work better, but my understanding of lattice squares is minimal.

So i attempted the proof using binomial theorems and exponent combination laws and i get stuck

\begin{equation*} \sum_{k=0}^n \dbinom{r+k}{k} \dbinom{m+n-r-k}{n-k}=\dbinom{n+m+1}{n} \end{equation*} working with the right side . \begin{equation*}\dbinom{n+m+1}{n}= \sum_n\dbinom{n+m+1}{n}x^n=(1+x)^{n+m+1}\end{equation*} \begin{equation*}=(1+x)^n(1+x)^m(1+x)\end{equation*} or would the next step be \begin{equation*}(1+x)^n(1+x)^{m+1}\end{equation*}

1 Answers1

2

We obtain \begin{align*} \color{blue}{\sum_{k=0}^n}&\color{blue}{\binom{r+k}{k}\binom{m+n-r-k}{n-k}}\\ &=\sum_{k=0}^n\binom{-r-1}{k}(-1)^k\binom{-m+r-1}{n-k}(-1)^{n-k}\tag{1}\\ &=(-1)^n\binom{-m-2}{n}\tag{2}\\ &\color{blue}{=\binom{n+m+1}{n}}\tag{3} \end{align*}

Comment:

  • In (1) we apply the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$ twice.

    This way we get for example $\binom{r+k}{k}=\binom{-(-r-k)}{k}=\binom{(-r-k)+k-1}{k}(-1)^k=\binom{-r-1}{k}(-1)^k$ with $-r-k=p$ and $k=q$.

  • In (2) we apply the Chu-Vandermonde identity.

  • In (3) we apply again the binomial identity as in (1).

Markus Scheuer
  • 108,315