QUESTION: \begin{equation*} \dbinom{n+m+1}{n}=\sum_{k=0}^n \dbinom{r+k}{k} \dbinom{m+n-r-k}{n-k} \end{equation*} where $n, m, r \geq 0$
I tried proving using binomial coefficient formula $\big[\dbinom{n}{k}=\frac{n!}{k!(n-k)!}\big]$, but dont think its possible with summation, however if it is would it work? Maybe lattice paths would work better, but my understanding of lattice squares is minimal.
So i attempted the proof using binomial theorems and exponent combination laws and i get stuck
\begin{equation*} \sum_{k=0}^n \dbinom{r+k}{k} \dbinom{m+n-r-k}{n-k}=\dbinom{n+m+1}{n} \end{equation*} working with the right side . \begin{equation*}\dbinom{n+m+1}{n}= \sum_n\dbinom{n+m+1}{n}x^n=(1+x)^{n+m+1}\end{equation*} \begin{equation*}=(1+x)^n(1+x)^m(1+x)\end{equation*} or would the next step be \begin{equation*}(1+x)^n(1+x)^{m+1}\end{equation*}