Prove $x+y+z\geq3$ given $xyz=1$ and $0<x,y,z\in\mathbb{F}$. Secondly, show that $x+y+z=3\iff x=y=z=1$.
($\mathbb{F}$ is the ordered field)
I've tried applying the following lemma with no success yet:
If $0<a<1$ and $1<b$ where $a,b\in\mathbb{F}$ then $1+ab<a+b$