What I tried is to find the transform of $f(t) = \frac{1-\cos(t)}{t}$ with $$\int_{s}^{\infty }\frac{1}{u} du + \int_{s}^{\infty }\frac{u}{u^2+1}du$$
$\int_{s}^{\infty }\frac{1}{u} du = \ln(\infty)-\ln(s)$. Is it a valid integral if I get an infinite value as a result?
$$\int_{s}^{\infty }\frac{u}{u^2+1}du = \frac{1}{2} \ln(\infty) - \frac{1}{2} \ln(s^2+1)$$
If it is right to have infinite values in the result of the integral, $\ln(\infty)$ cancels with $\frac{1}{2} \ln(\infty)$
and $F(s) = \ln(\infty) - \ln(s) - \frac{1}{2} \ln(\infty) + \frac{1}{2} \ln(s^2+1) $
$F(s)= \frac{1}{2} \ln(s^2+1) - \ln(s) = \ln\left(\frac{\sqrt{s^2+1}}{s}\right) $