I wanted to compute the sum $$\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}.$$ And I thought it would be easiest to do this by making it a function, differentiating it and integrating it then.
So I did: $$f_n(a)=\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}a^k$$ $$f_n'(a)=\sum_{k=1}^{n}\binom{n}{k}a^{k-1}=\frac{(a+1)^n-1}{a}$$ And finally $$f_n(a)=\int\frac{(a+1)^n-1}{a}\mathrm{d}a+C(n)$$ where $C(n)$ is an unknown constant depending on $n$.
The first problem is the integral of course, so here it stops.
Can anyone help me calculating this integral or is there another way to calculate the sum?
EDIT: another approach:
I get, using Pascal's identity, $$S(n)=\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}=\frac{1}{n}+\sum_{k=1}^{n-1}\left(\frac{1}{k}\binom{n-1}{k-1}+\frac{1}{k}\binom{n-1}{k}\right)=\sum_{k=1}^{n}\frac{1}{n}\binom{n}{k}+\sum_{k=1}^{n-1}\frac{1}{k}\binom{n-1}{k}$$
So I have the recursion $S(n)=\frac{2^n-1}{n}+S(n-1)$, with $S(1)=\frac{2^1-1}{1}$.
Thus $$\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}=\sum_{k=1}^{n}\frac{2^k-1}{k}$$ if that might help.
Also, $f_n(a)=\displaystyle\sum_{k=1}^{n}\frac{(a+1)^k-1}{k}$ for the same reason.