$$\int_{0}^{1}{x^2-1\over x^2+1}{x^{2n}\over \ln(x)}{\mathrm dx\over x}=F(n)\tag1$$
$n\ge 1.$
How do we show that $$F(n)=(-1)^{n-1}\ln\left({\pi\over 2}\prod_{k=1}^{n-1}\left({k+1\over k}\right)^{(-1)^k}\right)?$$
$x=\tan(u)$ then $\mathrm dx=\sec^2(u)\mathrm du$
$\cos(2x)={1-\tan^2(x)\over 1+\tan^2(x)}$
$$-\int_{0}^{\pi\over 4}\cos(2u){\tan^{2n}(u)\over \ln(\tan(u))}{\mathrm du\over \cos^2(u)\tan(u)}\tag2$$
$\tan(u)\cos^2(u)={2\over \sin(2u)}$
$$-{1\over 2}\int_{0}^{\pi\over 4}\cot(2u){\tan^{2n}(u)}{\mathrm du\over \ln\tan(u)}\tag3$$
$${\cos(2x)\over \sin(2x)}{\sin^{2n}(x)\over cos^{2n}(x)}=\cos(2x){\sin^{2n-1}(x)\over \cos^{2n+1}(x)}=\tan^{2n-1}(x)-\tan^{2n+1}(x)$$
$$-{1\over 4}\int_{0}^{\pi\over 4}{\tan^{2n-1}(x)\over \ln\tan(x)}\mathrm du+{1\over 4}\int_{0}^{\pi\over 4}{\tan^{2n+1}(x)\over \ln\tan(x)}\mathrm du\tag4$$