$$\begin{eqnarray*}
D &=&%
\begin{vmatrix}
n! & (n+1)! & (n+2)! \\
(n+1)! & (n+2)! & (n+3)! \\
(n+2)! & (n+3)! & (n+4)!%
\end{vmatrix}
\\
&=&%
\begin{vmatrix}
n! & (n+1)n! & (n+2)(n+1)n! \\
(n+1)n! & (n+2)(n+1)n! & (n+3)(n+2)(n+1)n! \\
(n+2)(n+1)n! & (n+3)(n+2)(n+1)n! & (n+4)(n+3)(n+2)(n+1)n!%
\end{vmatrix}
\\
&=&n!^{3}(n+1)^{2}(n+2)\underset{\text{This determinant is 2 (see below)}}{\underbrace{%
\begin{vmatrix}
1 & (n+1) & (n+2)(n+1) \\
1 & (n+2) & (n+3)(n+2) \\
1 & (n+3) & (n+4)(n+3)%
\end{vmatrix}%
}} \\
&=&n!^{3}\left( 2n^{3}+8n^{2}+10n+4\right)
\end{eqnarray*}$$
I have used the following property repeatedly: "If $B$ results from $A$ by multiplying one row or column with a number $c$, then $\det(B) = c \cdot \det(A)$". (Wikipedia). $n!$ is a factor of rows 1, 2 and 3. $n+1$ is a factor of rows 2 and 3. $n+2$ is a factor of row 3.
Thus
$$\frac{D}{n!^{3}}-4=2n^{3}+8n^{2}+10n=(2n^{2}+8n+10)n.$$
Evaluation of the last determinant expanding it by the minors of column 1.
$%
\begin{vmatrix}
1 & (n+1) & (n+2)(n+1) \\
1 & (n+2) & (n+3)(n+2) \\
1 & (n+3) & (n+4)(n+3)%
\end{vmatrix}%
$
$=%
\begin{vmatrix}
(n+2) & (n+3)(n+2) \\
(n+3) & (n+4)(n+3)%
\end{vmatrix}%
-%
\begin{vmatrix}
(n+1) & (n+2)(n+1) \\
(n+3) & (n+4)(n+3)%
\end{vmatrix}%
+%
\begin{vmatrix}
(n+1) & (n+2)(n+1) \\
(n+2) & (n+3)(n+2)%
\end{vmatrix}%
$
$=(n+2)(n+3)%
\begin{vmatrix}
1 & (n+3) \\
1 & (n+4)%
\end{vmatrix}%
-(n+1)(n+3)%
\begin{vmatrix}
1 & (n+2) \\
1 & (n+4)%
\end{vmatrix}%
$
$+(n+1)(n+2)%
\begin{vmatrix}
1 & (n+2) \\
1 & (n+3)%
\end{vmatrix}%
$
$=(n+2)(n+3)-2(n+1)(n+3)+(n+1)(n+2)$
$=\left( n^{2}+5n+6\right) -\left( 2n^{2}+8n+6\right) +\left(
n^{2}+3n+2\right) =2$