let $x>0$ And $f(x) =\dfrac{\sin x}{x}$ prove that for every $n$ :
$$|f^{(n)}(x)|<\frac{1}{n+1}$$
for $f^{(1)}$ we have :
$$\frac{x\cos x-\sin x}{x^2}<\frac{1}{2}$$
for $f^{(2)}$ we have :
$$\frac{x^2(-x\sin x)-2x(x\cos x-\sin x)}{x^2}<\frac{1}{3}$$
Now what ?