Yes.
Since $k$ is a multiplier not related to $j$, it can be "factored" out, resulting in the product of two summations.
Simple example, using $n=3$:
$$\text{LHS}=\sum_{k=1}^3\sum_{j=1}^3 k\cdot j=\sum_{k=1}^3 k+2k+3k=\sum_{k=1}^3 6k=6\sum_{k=1}^3 k=6(1+2+3)=36\\
\text{RHS}=\sum_{k=1}^3k\sum_{j=1}^3 j=(1+2+3)(1+2+3)=36$$
For the general case,
$$\begin{align}
\text{LHS}&=\sum_{k=1}^n\sum_{j=1}^n k\cdot j\\
&=\sum_{k=1}^n k+2k+3k+\cdots +nk\\
&=\sum_{k=1}^3 (1+2+3+\cdots+n)k\\
&=\sum_{k=1}^n \frac {n(n+1)}2k\\
&=\frac {n(n+1)}2\sum_{k=1}^nk\\
&=\frac {n(n+1)}2\cdot\frac {n(n+1)}2\\
&=\sum_{k=1}^n k\sum_{j=1}^n j \end{align}$$
Note: If $k$ is not a multiplier for the entire summand, then it cannot be "factored" out.
Example:
$$\sum_{k=1}^n\sum_{j=1}^n j+k\neq \sum_{k=1}^nk+\sum_{j=1}^nj$$