my approach
$$\nabla \vec{r} = \left(\frac{\partial }{\partial x}\vec {i} + \frac{\partial }{\partial y}\vec {j} + \frac{\partial }{\partial z}\vec {k}\right)(x\vec i + y\vec j+z \vec k) = \sum\frac{\partial }{\partial x}\vec {i}(x\vec i+y\vec j+ z\vec k) = \vec i \vec i + \vec j \vec j+ \vec k \vec k$$
What is this $\vec i \vec i$ expression? is this correct?
$$A\cdot\nabla \vec r = (A_1 \vec i + A_2 \vec j + A_3 \vec k)\cdot (\vec i \vec i + \vec j \vec j+\vec k \vec k) = \Sigma A_1 (\vec i\cdot \vec i \vec i) = \sum A_1 \vec i = \vec A $$
is this correct??? Please clarify
Otherway I tried
$$A\cdot \nabla \vec r = (A\cdot \nabla) \vec r = \cdots = \vec A~~\text{by exapanding}~~ (A\cdot\nabla)$$