Hi so I have this matrix $$\left[\begin{matrix} 0 & 4 & 3\\4& 1& 0\\3& 0 & 2\end{matrix}\right]$$ that im trying to find if its digonalizable or not but i cant seem to find the proper eigen values because one of it comes out to be imaginary. What am I doing wrong?
3 Answers
Since you did not tell us, where you are stuck, we can't help you with what you struggle. Hence this answer is minimalistic, but complete.
Real, symmetric matrices are diagonalizable (by orthogonal matrices) and have real eigenvalues. And your matrix is real and symmetric.
Have a look at the spectral theorem.

- 3,672
-
in case of interest: sometimes it becomes clear that the student is being asked about congruence rather than similarity (and may post contradictory phrases), see example http://math.stackexchange.com/questions/395634/given-a-4-times-4-symmetric-matrix-is-there-an-efficient-way-to-find-its-eige – Will Jagy Oct 27 '17 at 18:22
-
2In this case the question is probably homework or from an (old) exam. It is a typical example, where the calculation of eigenvalues gets pretty ugly, as you can see in the other solution, but the task can be solved in one line. – P. Siehr Oct 27 '17 at 19:51
I wonder if you're doing the eigenvalue calculation correctly. It should look something like this:
$$\begin{align} \det\left[\begin{matrix}-\lambda & 4 & 3 \\ 4 & 1- \lambda & 0 \\ 3 & 0 & 2-\lambda \end{matrix}\right] &= 3\left|\begin{matrix}4 & 3 \\ 1-\lambda & 0\end{matrix}\right| + (2-\lambda)\left|\begin{matrix}-\lambda & 4 \\ 4 & 1-\lambda\end{matrix}\right|\\ &=3(3(\lambda-1)) +(2-\lambda)((\lambda^2-\lambda)-16)\\ &=9\lambda-9-\lambda^3+3\lambda^2+14\lambda-32 \\ &=-(\lambda^3-3\lambda^2-23\lambda+41) \end{align}$$
In the first step there, I expanded along the bottom row, because there was a $0$ there. Your steps getting there may differ, but you should arrive at the same polynomial, which has 3 real roots, although they are not nice, rational numbers. They appear to equal approximately $-4.38, 1.62$ and $5.76$.
Double-check your calculation and see if you get the same eigenvalues.

- 31,218
-
in case of interest: sometimes it becomes clear that the student is being asked about congruence rather than similarity (and may post contradictory phrases), see example http://math.stackexchange.com/questions/395634/given-a-4-times-4-symmetric-matrix-is-there-an-efficient-way-to-find-its-eige – Will Jagy Oct 27 '17 at 18:22
For a symmetric matrix $H,$ without bothering about the eigenvalues, the matrix is congruent to a diagonal matrix, meaning there is a matrix $P$ with $\det P \neq 0$ such that $P^T HP = D$ is diagonal
$$ P^T H P = D $$ $$ Q^T D Q = H $$ $$ H = \left( \begin{array}{rrr} 0 & 4 & 3 \\ 4 & 1 & 0 \\ 3 & 0 & 2 \\ \end{array} \right) $$
==============================================
$$\left( \begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P = \left( \begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q = \left( \begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D = \left( \begin{array}{rrr} 1 & 4 & 0 \\ 4 & 0 & 3 \\ 0 & 3 & 2 \\ \end{array} \right) $$
==============================================
$$\left( \begin{array}{rrr} 1 & - 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P = \left( \begin{array}{rrr} 0 & 1 & 0 \\ 1 & - 4 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q = \left( \begin{array}{rrr} 4 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 16 & 3 \\ 0 & 3 & 2 \\ \end{array} \right) $$
==============================================
$$\left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & \frac{ 3 }{ 16 } \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P = \left( \begin{array}{rrr} 0 & 1 & \frac{ 3 }{ 16 } \\ 1 & - 4 & - \frac{ 3 }{ 4 } \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q = \left( \begin{array}{rrr} 4 & 1 & 0 \\ 1 & 0 & - \frac{ 3 }{ 16 } \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 16 & 0 \\ 0 & 0 & \frac{ 41 }{ 16 } \\ \end{array} \right) $$
==============================================
$$ P^T H P = D $$ $$\left( \begin{array}{rrr} 0 & 1 & 0 \\ 1 & - 4 & 0 \\ \frac{ 3 }{ 16 } & - \frac{ 3 }{ 4 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 0 & 4 & 3 \\ 4 & 1 & 0 \\ 3 & 0 & 2 \\ \end{array} \right) \left( \begin{array}{rrr} 0 & 1 & \frac{ 3 }{ 16 } \\ 1 & - 4 & - \frac{ 3 }{ 4 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 16 & 0 \\ 0 & 0 & \frac{ 41 }{ 16 } \\ \end{array} \right) $$ $$ Q^T D Q = H $$ $$\left( \begin{array}{rrr} 4 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & - \frac{ 3 }{ 16 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 16 & 0 \\ 0 & 0 & \frac{ 41 }{ 16 } \\ \end{array} \right) \left( \begin{array}{rrr} 4 & 1 & 0 \\ 1 & 0 & - \frac{ 3 }{ 16 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 0 & 4 & 3 \\ 4 & 1 & 0 \\ 3 & 0 & 2 \\ \end{array} \right) $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
As happens sometimes, there is a more attractive version available, all integers:
$$ P^T HP = D $$
$$\left( \begin{array}{rrr} 1 & -1 & 1 \\ -2 & 1 & -1 \\ 11 & -3 & 4\\ \end{array} \right) \left( \begin{array}{rrr} 0 & 4 & 3 \\ 4 & 1 & 0 \\ 3 & 0 & 2 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & -2 & 11 \\ -1 & 1 & -3 \\ 1 & -1 & 4 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 41 \\ \end{array} \right) $$
$$ Q^T D Q = H $$
$$\left( \begin{array}{rrr} -1 & -1 & 0 \\ 3 & 7 & 1 \\ 5 & 8 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & 41 \\ \end{array} \right) \left( \begin{array}{rrr} -1 & 3 & 5 \\ -1 & 7 & 8 \\ 0 & 1 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 0 & 4 & 3 \\ 4 & 1 & 0 \\ 3 & 0 & 2 \\ \end{array} \right) $$

- 139,541
and have real eigenvalues
to the answer. Thanks^^ – P. Siehr Oct 27 '17 at 13:30