3

How can we transform these parametric equations to Cartesian form?

$x=\frac{1}{2} \cos\theta, \quad y=2\sin\theta \quad\text{ for}\;\;0 \leq \theta \leq \pi$

Diego Pacheco
  • 151
  • 4
  • 13

2 Answers2

7

$(2x)^2+(y/2)^2=\sin^2(\theta)+\cos^2(\theta)=1 $

Mikasa
  • 67,374
5

We can use the fact that $\sin^2(\theta) + \cos^2(\theta) = 1,$ and then express the given parametric equations in terms of $\cos\theta$ and $\sin\theta$, respectively.

$x=\frac{1}{2}\cos\theta \iff 2x = \cos\theta$

$y=2\sin\theta \iff \frac12y=\sin\theta$.

Now using the identity: $$\sin^2(\theta) + \cos^2(\theta) = 1,$$ you simply need to substitute into the identity the expressions above for $\sin\theta$ and $\cos\theta$.

Doing so will give you a Cartesian function in $x$ and $y$.

amWhy
  • 209,954