How can we transform these parametric equations to Cartesian form?
$x=\frac{1}{2} \cos\theta, \quad y=2\sin\theta \quad\text{ for}\;\;0 \leq \theta \leq \pi$
How can we transform these parametric equations to Cartesian form?
$x=\frac{1}{2} \cos\theta, \quad y=2\sin\theta \quad\text{ for}\;\;0 \leq \theta \leq \pi$
We can use the fact that $\sin^2(\theta) + \cos^2(\theta) = 1,$ and then express the given parametric equations in terms of $\cos\theta$ and $\sin\theta$, respectively.
$x=\frac{1}{2}\cos\theta \iff 2x = \cos\theta$
$y=2\sin\theta \iff \frac12y=\sin\theta$.
Now using the identity: $$\sin^2(\theta) + \cos^2(\theta) = 1,$$ you simply need to substitute into the identity the expressions above for $\sin\theta$ and $\cos\theta$.
Doing so will give you a Cartesian function in $x$ and $y$.