Assume 3 random variables $x,y,z \sim U(0,1)$, which we consider to be a 3D coordinates in a cartesian box.
Assume we define now $k(x_1,y_1,z_1,x_2,y_2,z_2) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}$
What's the distribution of $k$?
My try is:
Consider 2 random variables $x_1, x_2 \sim U(0,1)$ then define $p=x_1 - x_2$.
Clearly $p \sim U(-1,1)$, therefore $\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2} \sim U(0,\sqrt{3})$.