For a given sequence $(a_n)$, where $a_1>0$ and for each natural number $n\ge 1$ :
$$a_{n+1}= \dfrac{a_n^2 + 1}{a_n}$$
Prove that a sequence $(a_n)$ diverges.
Proof: (objectionable evidence)
Lower barrier 0, prove. $a_n>0$ $\forall n\in N$. $N$ is natural number and $N>1$.
$n=1$
$a_{1+1}=\frac{a_1\cdot a_1+1}{a_1}=a_1+\frac{1}{a_1} >0$
$a_n>0$ $\Rightarrow a_{n+1}>0$ :
$a_{n+1}=a_n+\frac{1}{a_n}>0$, because $a_n > 0$
Monotonics:
$a_n\geq a_{n+1}$
$a_n-a_{n+1}=a_n-a_n-\frac{1}{a_n} < 0$, because $\frac{1}{a_n}>0$
Sequence is growing.
lim $a_{n+1} = A$
lim $a_{n+1} =$ lim $(a_n+\frac{1}{a_n}) =$ lim $a_n +$ lim $\frac{1}{a_n} = A + \frac{1}{A} = \frac{A\cdot A+1}{A}$ ....
Is this proof correct? Where are mistakes? The correct end of proof?