This is my first question, so I’m sorry if I made mistakes.
$\left(\begin{array}{ccccc}1&1&1&\cdots&1\\2&2^2&2^3&\cdots&2^n\\3&3^2&3^3&\cdots&3^n\\\vdots&\vdots&\vdots&\ddots&\vdots\\n&n^2&n^3&\cdots&n^n\end{array}\right)$
In order to solve the above inverse matrix, I tried to solve the below liner simultaneous equations in n-th unknowns.
$kx_1+k^2x_2+\cdots+k^nx_n=1+2^{n-1}+\cdots+k^{n-1}$
$k=1,2,\cdots,n$
Inductively, I know the solution of the liner simultaneous equations.
$x_k=\frac{B_{n-k}}{n-k} {n-1 \choose n-k-1} (1≦k<n-1)$
$x_{n-1}=\frac{1}{2}$
$x_n=\frac{1}{n}$
But even though I solved the solutions of the equations, I have no ideas how to use it.
I thought Vandermonde’s déterminant may be effective, but I have no ideas how to use it.