Proof(by contraposition): the tagged duplicate is trying to use bezout's identity while this post is trying not to
Suppose $\gcd(a^2,b^2)>1$ then $a^2$ & $b^2$ have a common factor greater than 1. W.L.O.G., it could be that $a\mid b$ or $a=b^n$ for some $n\in \Bbb{Z}$ or $a=b^{\frac{m}{k}}$ for some $k,m\in \Bbb{Z}$.
Case 1: $a|b$ iff $|a|\leq |b|$. Assuming that $a\neq 1$ and $b\neq 1$, then $gcd(a,b)\neq 1$.
Case 2: $a=b^n$ iff $b=\sqrt[n]{a}$, then $\gcd(a,b)=\gcd(a,\sqrt[n]{a})=\sqrt[n]{a} \neq 1$ assuming $a\neq 1$.
Case 3: $a=b^{\frac nk}$ iff $b=\sqrt[k]{a^n}$, then $\gcd(a,b)=\gcd(a,\sqrt[k]{a^n}) \neq \sqrt[k]{a^n} \neq 1$ assuming $a \neq 1$.
Thus, for all cases, if $\gcd(a,b)=1$, then $\gcd(a^2,b^2)=1$. QED
I think what I wrote is correct, but I am not that confident it is.