I try to go on with your approach.
\begin{align}
\sum_{j=0}^i|2j-i| \binom{i}{j}
&=2\sum_{j=0}^{\lfloor i/2\rfloor}(i-2j) \binom{i}{j}\\
&=2i\sum_{j=0}^{\lfloor i/2\rfloor}\binom{i}{j}-4\sum_{j=0}^{\lfloor i/2\rfloor}j\binom{i}{j}\\
&=2i\sum_{j=0}^{\lfloor i/2\rfloor}\binom{i}{j}-4i\sum_{j=1}^{\lfloor i/2\rfloor}\binom{i-1}{j-1}\\
&=2i\sum_{j=0}^{\lfloor i/2\rfloor}\binom{i}{j}-4i\sum_{j=0}^{\lfloor i/2\rfloor-1}\binom{i-1}{j}\\
&=2i\binom{i}{\lfloor i/2\rfloor}+2i\sum_{j=0}^{\lfloor i/2\rfloor-1}\underbrace{\left(\binom{i-1}{j-1}-\binom{i-1}{j}\right)}_{\leq 0}\\
&\leq 2i\binom{i}{\lfloor i/2\rfloor}.
\end{align}
Now show that the inequality holds for $d=2$ (I am aware that the one-line proof in Did's comment show that $d=1$ suffices).
It remains to show that for $i\geq 1$,
$$2i\binom{i}{\lfloor i/2\rfloor}\leq 2 \cdot 2^i\sqrt{i}\quad\text{or}\quad \binom{i}{\lfloor i/2\rfloor}\leq \frac{2^i}{\sqrt{i}}.$$
P.S. Take a look here: Elementary central binomial coefficient estimates