Here is a proof that $23\lt e^\pi$ based on the inequalities $e\gt2.718$ and $\pi\gt3.141$ and two calculations that can arguably be done by hand:
$$2.718\cdot1.047=2.845747\gt2.845=5.69/2$$
and
$$5.69^3=184.220009\gt184=8\cdot23$$
We have
$$e^{\pi/3}\gt e^{3.141/3}=e^{1.047}=e\cdot e^{.047}\gt2.718\cdot1.047\gt5.69/2$$
and thus
$$e^\pi=(e^{\pi/3})^3\gt(5.96/2)^3\gt8\cdot23/8=23$$
Remark: You can, if you like, replace the cube of $5.69$ with the easier $5.7^3=185.193\gt185$ and then write
$$5.69^3=5.7^3\left(1-{.01\over5.7}\right)^3\gt185\left(1-3\left(1\over570\right)\right)=185\left(1-{1\over190} \right)\gt185-1=184$$
Added later: Here is a proof that $\pi^e\lt23$ using a minimal amount of computation.
We begin with Christian Blatter's observation that it suffices to show $22^{30}\lt7^{30}23^{11}$, which we'll rewrite as
$$\left(22^3\over7^3\cdot23\right)^{10}\lt23$$
We'll show this in two steps:
$${22^3\over7^3\cdot23}\lt{27\over20}\quad\text{and}\quad\left(27\over20\right)^{10}\lt23$$
For the first of these, we have
$$\begin{align}
{22^3\over7^3\cdot23}\lt{27\over20}
&\iff20\cdot22^3\lt21^3\cdot23\\
&\iff22^2(21-1)(21+1)\lt21^2(22-1)(22+1)\\
&\iff22^2(21^2-1)\lt21^2(22^2-1)\\
&\iff-22^2\lt-21^2
\end{align}$$
For the second, observe that $(27/20)^2=1.35^2=1.8225\lt1.836=1.8(1.02)$ and
$$1.02^5=\left(1+{1\over50}\right)^5=1+{5\over50}+{10\over50^2}+{10\over50^3}+{5\over50^4}+{1\over50^5}\lt1+{1\over10}+{1\over10^2}+{1\over10^3}+\cdots={10\over9}={2\over1.8}$$
Thus
$$\left(27\over20\right)^{10}\lt1.8^5(1.02)^5\lt2\cdot1.8^4=2\cdot3.24^2\lt2\cdot3.25^2=2\left(13\over4\right)^2={169\over8}=21{1\over8}\lt23$$
and we're done!
Remark: The trickiest hand calculation here is $135^2=18225$, which isn't that hard if you know that $13\cdot14=182$ (and know the squaring trick $d5^2=d(d+1)25$). Alternatively, you can get the inequality $1.35^2\lt1.836$ from $135^2=3^2\cdot45^2=9\cdot2025\lt9\cdot2040$.