Let $k$ be a field. Let $\Omega$ be an algebraically closed extension of $k$. Let $X$ be a scheme of finite type over $k$. We denote $Hom_k(Spec(\Omega), X)$ by $X(\Omega)$. Let $\eta$ be the unique point of $Spec(\Omega)$. Let $\alpha,\beta \in X(\Omega)$. If $\alpha(\eta) = \beta(\eta)$, we write $\alpha \sim \beta$.
Let $f\colon X \rightarrow Y$ be a morphism of schemes of finite type over a field $k$. $f$ induces a map $\bar f\colon X(\Omega) \rightarrow Y(\Omega)$. Suppose $\bar f(\alpha) = \beta$. Suppose $\beta \sim \beta'$. Does there exist $\alpha'$ such that $\alpha \sim \alpha'$ and $\bar f(\alpha') = \beta'$?