1

I'm having troubles figuring out the following problem.

we wanna show that $$\sum_{n=0}^\infty\int_D f_d^n \, \mathrm d x \begin{cases} = \infty, \quad & d=1,2 \\ < \infty, \quad & d \geq 3\end{cases}$$ where $f_d (x) = \frac 1 d \sum_{i=1}^d \cos(2 \, \pi \, x_i)$ and $D = [-\frac 1 2 ,\frac 1 2]^d$.

So the idea is to do this \begin{align} \sum_{n=0}^\infty\int_D f_d^n \, \mathrm d x & \overset{(1)} = \sum_{n=0}^\infty \int_D \lim_{\varepsilon \uparrow 1} \, (\varepsilon \,f_d)^n \, \mathrm d x \overset{(2)} = \sum_{n=0}^\infty \lim_{\varepsilon \uparrow 1} \int_D (\varepsilon \,f_d)^n \, \mathrm d x \\ & \overset{(3)} = \lim_{\varepsilon \uparrow 1} \sum_{n=0}^\infty \int_D (\varepsilon \,f_d)^n \, \mathrm d x \overset{(4)} = \lim_{\varepsilon \uparrow 1} \int_D \sum_{n=0}^\infty (\varepsilon \,f_d)^n \, \mathrm d x \\ & \overset{(5)} = \lim_{\varepsilon \uparrow 1} \int_D \frac 1 {1 - \varepsilon \,f_d} \, \mathrm d x \overset{(6)} = \int_D \frac 1 {1 - f_d} \, \mathrm d x \end{align}

and then the last integral can be bounded from above (for $d \geq 3$) and below (for $d = 1,2$) by the inequality $$\frac {y^2} 6 \leq 1 - \cos(y) \leq \frac {y^2} 2, \quad y \in [-\pi , \pi]$$

That said, we have $$\int_D \frac 1 {1 - f_d} \, \mathrm d x \begin{cases} = \infty, \quad & d=1,2 \\ < \infty, \quad & d \geq 3 .\end{cases}$$


Now my question is, how do I justify the interchanging of limits above?

In particular in the case $d = 1,2$ in (3) and (6).

$\,$

(1) is easy, nothing happens

(2) is understood by the dominant convergence theorem by Lebesgue, since $|f_d| \leq 1$ is bounded

(4) & (5) also easy, since for $0 < \varepsilon < 1$ we have $\int_D (\varepsilon \, f_d)^n \, \mathrm d x < 1$ and therefore the geometric sum converges, and power series can be integrated term by term within their radius of convergence

$\,$

However, I can only justify (6) if $d \geq 3$, otherwise the last integral is unbounded.

For (3) I tried to show that $$h_d(\varepsilon) : = \sum_{n=0}^\infty \int_D (\varepsilon \,f_d)^n \, \mathrm d x = \int_D \frac 1 {1 - \varepsilon \, f_d} \, \mathrm d x$$ is continuous at $\varepsilon = 1$, that is $|h_d(\varepsilon) - h_d(1)| \to 0 \, \,(\varepsilon \to 1)$ for any $d$, but I didn't manage.

$\,$

Is there any easier way to do that?

Any help much appreciated!

  • See here for when you can interchange sums and integrals. Also, for the $d = 1, 2$ cases, why not just explicitly compute the integral first, then sum it? – Matthew Cassell Oct 19 '17 at 13:53
  • thanks! altough, i would be very glad for a bit more context! where do i have to look in this post? – cesare borgia Oct 19 '17 at 13:56
  • well, afai tell, this doesn' really answer my question, since i understand the interchange of the sum and the integral; what's bothering me is the limit <--> sum – cesare borgia Oct 19 '17 at 13:58
  • Sorry, I read the line 'how do I justify the interchanging of limits above?' incorrectly. If you mean you want to know when you can interchange the limit and integral, it is an application of the dominated convergence theorem. – Matthew Cassell Oct 19 '17 at 14:02
  • i assume you are talking about equality (6); but there i can use DCT if there exists a summable function $g \geq |\frac 1 {1 - \varepsilon , f_d}|$ forall $\varepsilon$ and in the cases $d =1,2$ I can't find one! $, \$

    (also how about equality (3) ?)

    – cesare borgia Oct 19 '17 at 14:07

1 Answers1

1

My claim is that for $d = 1,2$ the function $h_d(\varepsilon)$ is actually discontinuous at $\varepsilon = 1$.

$$|h_d(1) - h_d(\varepsilon)| = \bigg| \int_D \frac {(1-\varepsilon) \, f_d} {(1 - \varepsilon \, f_d) \, (1 - f_d)} \, \mathrm d x \bigg| \geq \bigg| \int_D \frac{(1-\varepsilon) \, f_d} {4 \, \pi \, x^2} \, \mathrm d x \bigg|,$$

since $ 1 - \cos(y) \leq \frac {y^2} 2$ and $1 - \varepsilon \, f_d \leq 2$.

Now estimate with $$f_d \geq \begin{cases} \frac 1 2, \quad & |x| \leq \frac 1 {12}, \\ - 1, \quad & |x| \geq \frac 1 {12}, \, x \in D \end{cases}$$

and the abbreviations $A = \{x \in D \, : \, |x| \leq \frac 1 {12}\}$, $\, B = D \smallsetminus A$

$$\int_A \frac {\mathrm d x} {8 \, \pi \, x^2} \underbrace{- \int_B \frac {\mathrm d x} {4 \, \pi \, x^2}}_{|\cdot | < \infty} \leq \int_D \frac {f_d} {4 \, \pi \, x^2} \, \mathrm d x.$$

However, for $d = 1,2$ the first term is unbounded and positive. Observe now that $$a_\varepsilon := |h_d(1) - h_d(\varepsilon)| > \delta$$ for any $\delta > 0$ for any $\varepsilon < 1$ and thus $$\lim_{\varepsilon \to 1} a_\varepsilon = \infty.$$


For $d \geq 3$ there is no problem with (6) and even (3), since $\frac 1 {1 - f_d}$ is a summable upper bound, and $h_d(\varepsilon)$ is continuous at $\varepsilon = 1$.

\begin{align} |h_d(1) - h_d(\varepsilon)| & \leq \int_D \frac {|1-\varepsilon| \, f_d} {|1 - \varepsilon \, f_d| \, |1 - f_d|} \, \mathrm d x \\ & \leq \int_D \frac {|1-\varepsilon| \, f_d} {|\varepsilon \, \frac {4 \, \pi \, x^2} 6 + 1 - \varepsilon| \, \frac {4 \, \pi \, x^2} 6} \, \mathrm d x \leq C \, (1-\varepsilon) \to 0 \;\;\; (\varepsilon \to 1) \end{align}


So what's left: Show that for $d= 1,2$ $$\sum_{n=0}^\infty \int_D f^n_d \, \mathrm d x = \infty.$$

How do I do that?