Let $f$ be an endomorphism of a finite dimensional vector space $E$ over the field $K$ and let $P \in K[x]$. Let $P=QR$ with $Q$ and $R$ relatively prime.
Then
$$Ker[P(f)]= Ker[Q(f)]\oplus Ker[R(f)].$$
In French this is called the "lemme des noyaux" or "théorème de la décomposition des noyaux" which translates to kernel decomposition theorem.