0

$$\lim_{x\to0}{\frac{sinx}{x}}=1$$ or can only use some other methods like the l'Hôpital's Rule to solve it

1 Answers1

0

I prove that the limit is $1$ using $\varepsilon$-$\delta$ definition.

Sketch Work:

Since $$\cos x<\frac{\sin x}{x}<1,$$ we have $$\bigg|\frac{\sin x}{x}-1\bigg|<1-\cos x$$ and $1-\cos x=2\sin^2\frac{x}{2}\leqslant\frac{x^2}{2}$ hence $$\bigg|\frac{\sin x}{x}-1\bigg|\leqslant\frac{x^2}{2}$$

Solution:

Let $\varepsilon>0$ be given. Choose $\delta = \sqrt{2\varepsilon}>0.$ Then for any $0<|x|<\delta = \sqrt{2\varepsilon},$ we have $$x^2<2\varepsilon.$$ Therefore, $$\bigg| \frac{\sin x}{x} - 1 \bigg| \leq \frac{x^2}{2}<\varepsilon.$$ Hence, $$\lim_{x\to 0}\frac{\sin x}{x} = 1.$$

Idonknow
  • 15,643