4

Compute $$ \int_{0}^{ \infty }\frac{\ln xdx}{x^{2}+ax+b}$$ I tried to compute the indefinite integral by factorisation and partial fraction decomposition but it became nasty pretty soon. There must be another way to directly evaluate it without actually computing the indefinite integral which I don't know!

Guy Fsone
  • 23,903

2 Answers2

4

In order for your integral to converge, we must have $b>0$.

Hence $$\begin{aligned}\int_0^\infty {\frac{{\ln x}}{{{x^2} + ax + b}}dx} &= \sqrt b \int_0^\infty {\frac{{\ln (\sqrt b x)}}{{b{x^2} + a\sqrt b x + b}}dx} \\ &= \sqrt b \ln \sqrt b \int_0^\infty {\frac{1}{{b{x^2} + a\sqrt b x + b}}dx} + \sqrt b \underbrace{\int_0^\infty {\frac{{\ln x}}{{b{x^2} + a\sqrt b x + b}}dx}}_{=0} \end{aligned}$$

The last integral is zero by making the subsitution $x\mapsto 1/x$. I think you will have no difficulty in evaluating the remaining integral. Although there are a lot of cases to discuss (depending on $a,b$, the integral might diverge, involve logarithm, or involve arc-tangent).

pisco
  • 18,983
1

Let $$I = \int^{\infty}_{0}\frac{\ln x}{x^2+ax+b}dx$$

Put $\displaystyle x = \frac{b}{t}$ and $\displaystyle dx = -\frac{b}{t^2}dt$

So $$I = \int^{\infty}_{0}\frac{\ln (b)-\ln(t)}{t^2+at+b}dt = \ln (b)\int^{\infty}_{0}\frac{1}{t^2+at+b}dt-I$$

So $$I = \frac{\ln (b)}{2}\int^{\infty}_{0}\frac{1}{\left(t+\frac{a}{2}\right)^2+\left(b-\frac{a^2}{4}\right)}dt = \frac{\ln (b)}{2}\cdot \frac{4}{4b-a^2}\cdot \tan^{-1}\left(\frac{4t+2a}{4b-a^2}\right)\Bigg|^{\infty}_{0}$$

for $\displaystyle b-\frac{a^2}{4}>0$

DXT
  • 11,241