1

What can we say about $\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^k\log (2k+1)}{2k+1}$? Clearly it takes a value of negative real number, and seems to be an analogy of $\displaystyle \sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}=\frac{\pi}{4}$, but I don't know the way of evaluating $\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^k\log (2k+1)}{2k+1}$.

Mick
  • 11

0 Answers0