In the last two years I have been working with a multi-valued function, which is a modification of Lambert function, $W_q(z)$, https://doi.org/10.1016/j.physa.2019.03.046.
In the original problem, R. V. Ramos propose $W_q(z)$ as solution of the problem $$ W_q(z) \cdot \bigg( 1 + (1-q)\cdot W_q(z) \bigg)^\frac{1}{1-q} = z$$
Actually, we have been using Lambert-Tsallis function in many fields, being able to discuss closed-formula of transcendental equations, writing then in terms of $W_q$.
I have been working a bit to find your answers and make me be understood. For this reason, I decide to change usual notation. Instead of use $W_q(z)$ I will use $W_r(z)$ which is the solution of $$ W_r(z) \cdot \bigg( 1 + \frac{W_r(z)}{r} \bigg)^r = z$$
where $r=1/(q-1)$. From now on I will refer to subindex "r" always.
After a few manipulations and taking in account very relevant aspects ($A,C >0, x> 0, s \in R$), one can show that
$$ x=\sqrt{\frac{A^2}{2s} \cdot W_{2s}\bigg(2s\cdot \big(\frac{C}{A^{2s+1}}\big)^2 \bigg) } \ \ \ \ \ (1)$$
As previously said, $W_r(z)$ is a multivalued function. In this way, you have to test which of the solutions found will be a truly solution of your original problem.
But let's go to the considerations
$$ x>0 \implies \bigg \{ \begin{matrix} s,W_{2s} > 0 \ \ \ \ \ (2.1) \\ s,W_{2s} < 0 \ \ \ \ \ (2.2) \end{matrix} $$
About $2.1$
In $W_r(z)$ when $r,z >0$ at least one solution will be positive. No matter if $r>0$ is integer or not. In your case, $z>0$ when $s>0$. Following, you have some results using Eq (1). Only those in bold are accepted answers and they are presented with 5 decimal points.
\begin{matrix}
s & A & C & r & z & W & x \\
\textbf{+0.2500} & \textbf{+4.0000} & \textbf{+3.1416} & \textbf{+0.5000} & \textbf{+0.0771} & \textbf{(+0.07209 , +0.00000i)} & \textbf{(+1.51879 , +0.00000i)} \\
+0.5000 & +4.0000 & +3.1416 & +1.0000 & +0.0386 & (-1.03717 , +0.00000i) & (+0.00000 , +4.07366i) \\
\textbf{+0.5000} & \textbf{+4.0000} & \textbf{+3.1416} & \textbf{+1.0000} & \textbf{+0.0386} & \textbf{(+0.03717 , +0.00000i)} & \textbf{(+0.77119 , +0.00001i)} \\
+1.0000 & +4.0000 & +3.1416 & +2.0000 & +0.0048 & (-2.00240 , +0.09803i) & (+0.09794 , +4.00360i) \\
+1.0000 & +4.0000 & +3.1416 & +2.0000 & +0.0048 & (-2.00240 , -0.09803i) & (+0.09794 , -4.00359i) \\
\textbf{+1.0000} & \textbf{+4.0000} & \textbf{+3.1416} & \textbf{+2.0000} & \textbf{+0.0048} & \textbf{(+0.00480 , -0.00000i)} & \textbf{(+0.19588 , -0.00002i)} \\
+3.0000 & +4.0000 & +3.1416 & +6.0000 & +0.0000 & (-6.29798 , -0.17025i) & (+0.05539 , -4.09850i) \\
+3.0000 & +4.0000 & +3.1416 & +6.0000 & +0.0000 & (-6.29798 , +0.17025i) & (+0.05539 , +4.09850i) \\
+3.0000 & +4.0000 & +3.1416 & +6.0000 & +0.0000 & (-6.00332 , -0.34584i) & (+0.11520 , -4.00276i) \\
+3.0000 & +4.0000 & +3.1416 & +6.0000 & +0.0000 & (-6.00332 , +0.34584i) & (+0.11520 , +4.00276i) \\
+3.0000 & +4.0000 & +3.1416 & +6.0000 & +0.0000 & (-5.69871 , +0.17602i) & (+0.06020 , +3.89874i) \\
+3.0000 & +4.0000 & +3.1416 & +6.0000 & +0.0000 & (-5.69871 , -0.17602i) & (+0.06020 , -3.89874i) \\
\textbf{+3.0000} & \textbf{+4.0000} & \textbf{+3.1416} & \textbf{+6.0000} & \textbf{+0.0000} & \textbf{(+0.00000 , +0.00000i)} & \textbf{(+0.00077 , +0.00000i)} \\
+3.0000 & +3.1416 & +4.0000 & +6.0000 & +0.0000 & (-6.56464 , -0.31991i) & (+0.08005 , -3.28707i) \\
+3.0000 & +3.1416 & +4.0000 & +6.0000 & +0.0000 & (-6.56464 , +0.31991i) & (+0.08005 , +3.28707i) \\
+3.0000 & +3.1416 & +4.0000 & +6.0000 & +0.0000 & (-6.01195 , +0.65792i) & (+0.17182 , +3.14941i) \\
+3.0000 & +3.1416 & +4.0000 & +6.0000 & +0.0000 & (-6.01195 , -0.65792i) & (+0.17182 , -3.14941i) \\
+3.0000 & +3.1416 & +4.0000 & +6.0000 & +0.0000 & (-5.42341 , -0.34099i) & (+0.09385 , -2.98830i) \\
+3.0000 & +3.1416 & +4.0000 & +6.0000 & +0.0000 & (-5.42341 , +0.34099i) & (+0.09385 , +2.98830i) \\
\textbf{+3.0000} & \textbf{+3.1416} & \textbf{+4.0000} & \textbf{+6.0000} & \textbf{+0.0000} & \textbf{(+0.00001 , +0.00000i)} & \textbf{(+0.00416 , +0.00000i)} \\
\end{matrix}
About $2.2$
There is a second possibilty to exist $x>0$. If $s<0$ we have $r<0$ and if $W_r(z)<0$ it could have at least one possible solution $x>0$. The figure below illustrates behavior of Lambert-Tsallis function when $r \in Z_{-}^{*} < -1$.
$r \in Z_{-}^{*} $" />
The case $\mathbf{ r < -1}$ or $\mathbf{s < -1/2}$
If we look to such a figure, when the condition $z_b < z < 0$ is satisfied there are 2 possible $W_r(z) <0$ that could generate solutions for $x$ that can be written as
$$ z_b < \frac{r\cdot C^2}{A^{2r+2}} <0 $$
$$ \implies C< C_{Thr}= A^{r+1}\cdot \sqrt{-\frac{1}{r+1} \cdot (\frac{r}{r+1})^r} $$
When $s<-1/2$, you see that there is a relationship that must be satisfied if you want to have $x>0$. Let's see somes examples.
\begin{matrix}
A & s & C_{Thr} & C/C_{Thr} & r & z & W & x\\
\textbf{+3.1416} & \textbf{-1/1.99} & \textbf{+0.9787} & \textbf{+0.9000} & \textbf{-1.0050} & \textbf{-0.7887} & \textbf{(-3.80307 , -0.00000i)} & \textbf{(+6.11123 , +0.00000i)} \\
\textbf{+3.1416} & \textbf{-1/1.9} & \textbf{+0.8481} & \textbf{+0.9000} & \textbf{-1.0526} & \textbf{-0.6918} & \textbf{(-2.45948 , +0.00000i)} & \textbf{(+4.80212 , -0.00000i)} \\
\textbf{+3.1416} & \textbf{-2/3} & \textbf{+0.4693} & \textbf{+0.9000} & \textbf{-1.3333} & \textbf{-0.5103} & \textbf{(-1.20217 , +0.00000i)} & \textbf{(+2.98307 , -0.00000i)} \\
\textbf{+3.1416} & \textbf{-1.0000} & \textbf{+0.1592} & \textbf{+0.9000} & \textbf{-2.0000} & \textbf{-0.4050} & \textbf{(-5.09081 , +0.00000i)} & \textbf{(+5.01220 , -0.00000i)} \\
\textbf{+3.1416} & \textbf{-1.0000} & \textbf{+0.1592} & \textbf{+0.9000} & \textbf{-2.0000} & \textbf{-0.4050} & \textbf{(-0.78573 , +0.00000i)} & \textbf{(+1.96912 , -0.00000i)} \\
\textbf{+3.1416} & \textbf{-1.5000} & \textbf{+0.0390} & \textbf{+0.9000} & \textbf{-3.0000} & \textbf{-0.3600} & \textbf{(-3.24070 , +0.00000i)} & \textbf{(+3.26519 , -0.00000i)} \\
\textbf{+3.1416} & \textbf{-1.5000} & \textbf{+0.0390} & \textbf{+0.9000} & \textbf{-3.0000} & \textbf{-0.3600} & \textbf{(-0.64650 , +0.00000i)} & \textbf{(+1.45839 , -0.00000i)} \\
+3.1416 & -1.5000 & +0.0390 & +0.9000 & -3.0000 & -0.3600 & (+12.88720 , +0.00000i) & (+0.00000 , -6.51131i) \\
+3.1416 & -1.5000 & +0.0390 & +1.1000 & -3.0000 & -0.5378 & (-1.13571 , +1.05148i) & (+2.10097 , -0.82325i) \\
+3.1416 & -1.5000 & +0.0390 & +1.1000 & -3.0000 & -0.5378 & (-1.13571 , -1.05148i) & (+2.10097 , +0.82325i) \\
+3.1416 & -1.5000 & +0.0390 & +1.1000 & -3.0000 & -0.5378 & (+11.27141 , -0.00000i) & (+0.00000 , +6.08946i) \\
\textbf{+3.1416} & \textbf{-2.0000} & \textbf{+0.0105} & \textbf{+0.9000} & \textbf{-4.0000} & \textbf{-0.3417} & \textbf{(-2.71659 , -0.00000i)} & \textbf{(+2.58900 , +0.00000i)} \\
\textbf{+3.1416} & \textbf{-2.0000} & \textbf{+0.0105} & \textbf{+0.9000} & \textbf{-4.0000} & \textbf{-0.3417} & \textbf{(-0.59515 , -0.00000i)} & \textbf{(+1.21181 , +0.00000i)} \\
+3.1416 & -2.0000 & +0.0105 & +0.9000 & -4.0000 & -0.3417 & (+9.65587 , +8.06864i) & (+1.90040 , -5.23798i) \\
+3.1416 & -2.0000 & +0.0105 & +0.9000 & -4.0000 & -0.3417 & (+9.65587 , -8.06864i) & (+1.90040 , +5.23798i) \\
+3.1416 & -2.0000 & +0.0105 & +1.0100 & -4.0000 & -0.4304 & (-1.30394 , +0.30543i) & (+1.80579 , -0.20867i) \\
+3.1416 & -2.0000 & +0.0105 & +1.0100 & -4.0000 & -0.4304 & (-1.30394 , -0.30543i) & (+1.80579 , +0.20867i) \\
+3.1416 & -2.0000 & +0.0105 & +1.0100 & -4.0000 & -0.4304 & (+9.30394 , -7.49468i) & (+1.80579 , +5.12030i) \\
+3.1416 & -2.0000 & +0.0105 & +1.0100 & -4.0000 & -0.4304 & (+9.30394 , +7.49468i) & (+1.80579 , -5.12030i) \\
\end{matrix}
The case $\mathbf{ r = -1}$ or $\mathbf{s = -1/2}$
In the end of your question, you have mentioned that $s=-1/2$ results like an inflection point. Actually, this is an special case $W_r(z)$ function.
$$W_{-1}(z)=\frac{z}{z+1}$$
There is no branch point, like Lambert Function. In this case, you can see the solution
$$ x = \frac{A \cdot C}{\sqrt{1-C^2}}$$
But there is a point that cause problem. It corresponds to $z=-1$ or $C= A^{2r+1}=1 $.
The case $\mathbf{ -1 < r < 0}$ or $\mathbf{-1/2 < s < 0}$
In that region, there is no branch point also. Actually if you try to apply the formula for $C_{Threshold}$ you will note that I would correspond to $C \notin R$. It says for us there is no branch point.
The solution found in this region will be positive and it will increase until the limit of $x$ corresponding to $r=1$ but for $C\neq 1$. I would have to analyse the case when $C>1$ but I believe it would generate $x<0$ which is not of your interest. Maybe, because of this you have imposed a condition of C small. Following some examples
\begin{matrix}
A & C & s & r & z & x_{analytic} & W & x_{numeric} \\
\textbf{+3.1416} & \textbf{+0.5000} & \textbf{-1/5} & \textbf{-0.4000} & \textbf{-0.0253} & \textbf{+1.8138} & \textbf{(-0.02596 , +0.00000i)} & \textbf{(+0.80037 , -0.00000i)} \\
\textbf{+3.1416} & \textbf{+0.5000} & \textbf{-1/2.5} & \textbf{-0.8000} & \textbf{-0.1265} & \textbf{+1.8138} & \textbf{(-0.14450 , -0.00000i)} & \textbf{(+1.33516 , +0.00000i)} \\
\textbf{+3.1416} & \textbf{+0.5000} & \textbf{-1/2.1} & \textbf{-0.9524} & \textbf{-0.2135} & \textbf{+1.8138} & \textbf{(-0.27100 , -0.00000i)} & \textbf{(+1.67584 , +0.00000i)} \\
\textbf{+3.1416} & \textbf{+0.5000} & \textbf{-1/2.025} & \textbf{-0.9877} & \textbf{-0.2400} & \textbf{+1.8138} & \textbf{(-0.31567 , -0.00000i)} & \textbf{(+1.77608 , +0.00000i)} \\
\textbf{+3.1416} & \textbf{+0.5000} & \textbf{-1/2.00025} & \textbf{-0.9999} & \textbf{-0.2499} & \textbf{+1.8138} & \textbf{(-0.33315 , -0.00000i)} & \textbf{(+1.81341 , +0.00000i)} \\
\textbf{+3.1416} & \textbf{+0.5000} & \textbf{-0.5000} & \textbf{-1.0000} & \textbf{-0.2500} & \textbf{+1.8138} & \textbf{(-0.33333 , +0.00000i)} & \textbf{(+1.81380 , -0.00000i)} \\
\end{matrix}