We know that, for an irreducible and aperiodic discrete time Markov chain with stationary distribution $\pi$, we have $$\lim_{n \rightarrow \infty}p^n(x,y) = \pi(y)$$ However - what if the Markov chain is not aperiodic? Is there an easy way to calculate this probability limit, or does it not exist?
-
Build a matrix for it..? – mathreadler Oct 11 '17 at 22:59
-
1@mathreadler $$P = \begin{pmatrix} 0 & 1 & 0 & 0\ 0 & 0 & .8 & .2\ 1 & 0 & 0 & 0\ 1 & 0 & 0 & 0\ \end{pmatrix}$$ – mizichael Oct 11 '17 at 23:02
-
You are asking about an equilibrium of a discrete Markov chain, with the hypothesis of irreducible and aperiodic. Some good discussion of existence in this case (contrasting with more general cases) is given for this older Question. Finding (potential) equilibrium states is a natural eigenvalue problem, once the transition matrix is known. – hardmath Oct 17 '17 at 16:11
2 Answers
Let $p_{xy}^{(n)}$ and $f_{xy}^{(n)}$ be the n step transition probability from x to y and the first entry probability in n steps from $x$ to $y$. Let $\mu_y$ be the mean return time to $y$. Here is a general result
Theorem : Let $(X_n)_{n=0}^\infty$ be a homogeneous markov chain with discrete state space $E$.
(i) Suppose $y\in E$ is transient. Then for any $x\in E$, $\sum_{n=1}^\infty p_{xy}^{(n)}<+\infty$ and $\underset{n\to\infty}{\lim}p_{xy}^{(n)}=0$.
(ii) Suppose $y\in E$ is recurrent and aperiodic. Then for any $x\in E$, $\underset{n\to\infty}{\lim}p_{xy}^{(n)}=\begin{cases}0 & \mbox{if }\mu_y=+\infty \\ \frac{f_{xy}}{\mu_y} & \mbox{if } \mu_y<+\infty\end{cases}$.
(ii') Suppose $y\in E$ is recurrent and aperiodic and $x\in E$ such that $x\leftrightarrow y$. Then $\underset{n\to\infty}{\lim}p_{xy}^{(n)}=\begin{cases}0&\mbox{if }\mu_y=+\infty \\ \frac{1}{\mu_y}&\mbox{if }\mu_y<+\infty\end{cases}$
(iii) Suppose $y\in E$ is recurrent and periodic with period $d>1$. Then for any $x\in E$ and each $r=0,1,\cdots,d-1$, $$\underset{n\to\infty}{\lim}p_{xy}^{(nd+r)}=\begin{cases}0 & \mbox{if }\mu_y=+\infty \\ \frac{d}{\mu_y}\sum_{k=0}^\infty f_{xy}^{(kd+r)}&\mbox{if } \mu_y<+\infty\end{cases}$$
(iii') Suppose $y$ is recurrent and periodic with period $d>1$ and $x\in E$ such that $x\leftrightarrow y$ so $x,y$ belong to the same equivalence class $S$. Also suppose $x\in C_a$ and $y\in C_b$ where $a,b\in\{0,1,\cdots,d-1\}$ and $C_0,C_1,\cdots,C_{d-1}$ are cyclic subclasses of $S$ with respect to a fixed state in $S$. Then $$\underset{n\to\infty}{\lim}p_{xy}^{(nd+b-a)}=\begin{cases}0 & \mbox{if }\mu_y=+\infty \\ \frac{d}{\mu_y}&\mbox{if } \mu_y<+\infty\end{cases}$$
Corollary
(i) Let $y\in E$ be recurrent. Then $y$ is null recurrent if and only if $\underset{n\to\infty}{\lim}p_{yy}^{(n)}=0$.
(ii) Let $y\in E$ be recurrent. Then $y$ is positive recurrent if and only if $\underset{n\to\infty}{\varlimsup}p_{yy}^{(n)}>0$.
(i') If $y\in E$ is transient or null recurrent, then for any $x\in E$, $\underset{n\to\infty}{\lim}p_{xy}^{(n)}=0$.
(ii') If $y\in E$ is positive recurrent and aperiodic, then for any $x\in E$ such that $x\leftrightarrow y$, $\underset{n\to\infty}{\lim}p_{xy}^{(n)}=\frac{1}{\mu_y}>0$.
Note: In (i'), we don't have any requirement on the period of $y$ or whether $x$ communicates with $y$.

- 140
- 8
The chain does not converge to equilbrium, where equilibrium means that for all $x,y \in S$, $\lim \limits_{n \to \infty} p^n(x,y) $ exists and is independent of $x$.
Proof: Your chain is irreducible with period $3$, and therefore $\lim \limits_{n \to \infty} p^{3n+1}(x,x) = \lim \limits_{n \to \infty} p^{3n+2}(x,x) = 0$ for all $x \in S$. But $p^{3n}(1,1)=1$ for all $n$, so the limit $\lim \limits_{n \to \infty} p^n(1,1)$ does not exist.

- 1,988