$$133|11^{n+1} + 12^{2n-1}$$
I proof by Induction
Basic step
$$
\begin{align}
P(1); 133|(121 + 12)
\end{align}
$$
Inductive step
$$ \begin{align} P(k);&133|(11^{k+1}+12^{2k-1})\\ \\ P(k+1); & 11^{k+2} +12^{2k+1}\\ &(12-1)11^{k+2} + 12 ^{2k+1}\\ &12\cdot 11^{k+1} + 12 ^{2k + 1}\\ &12(11^{k+1}+12^{2k}) -11^{k+1}\\ &12(11^{k+1}+12^{2k-1}+11\cdot12^{2k-1})-11^{k+1}\\ &12(11^{k+1}+12^{2k-1}) + 11(12^{2k}-11^k) \end{align} $$ I can't solve more, please help!