$$P(t)'=0 \Rightarrow 4 \times 0.0000000219 \ t^3-3 \times 0.0000167 \ t^2+2\times 0.00155 \ t+0.002 =0 $$
$t_1= -0.638564; \; t_2 = 71.3329;\; t_3 = 501.223$
To understand which is maximum second derivative test is the best method
$P''(t)=0.0031 - 0.0001002 t + 2.628\times 10^{-7} t^2$
$P''(t_1)=0.00316409>0$ then $t_1$ is a minimum
$P''(t_2)=-0.00271033<0$ then $t_2$ is a maximum
$P''(t_3)=0.0188993>0$ then $t_3$ is another minimum
Hope this can be useful
Edit
How did I find the roots?
Well, I'll show $t_2$ which is the maximum
First I made a table of values to look for signs changing. Like this
$
\begin{array}{l|l}
x & f'(x) \\
\hline
10 & 0.0280776 \\
20 & 0.0446608 \\
30 & 0.0522752 \\
40 & 0.0514464 \\
50 & 0.0427 \\
60 & 0.0265616 \\
70 & 0.0035568 \\
80 & -0.0257888 \\
90 & -0.0609496 \\
100 & -0.1014 \\
\end{array}
$
Therefore a root is in the interval $[70,80]$
I set $t_0=70$ and then, recursively
$$t_{n+1}=t_n-\frac{f'(t_n)}{f''(t_n)}$$
we get
$
\begin{array}{l|l}
n & t_n\\
\hline
0 & 70 \\
1 & 71.3543 \\
2 & 71.3329 \\
3 & 71.3329 \\
\end{array}
$
so $t\approx 71.3329$