Prove that for every $n$,$i$ $\in$ $\mathbb{N}$ if $0$$\leq$$i$$\leq$$n$ then ${{n}\choose{i}}$$=$${{n}\choose{n-i}}$. Secondly, prove that if $i$$<$$j$$\leq$$n\over2$ then ${{n}\choose{i}}$$<$${{n}\choose{j}}$.
According to me, the first one is trivially true by expanding ${{n}\choose{n-i}}$ to get to ${{n}\choose{i}}$ (Is that correct though?). Concerning the second part, here's what I did: $($$i$$<$$j$$\leq$$n\over2$$)$ $\longrightarrow$ $($$-i$$>$$-j$$\geq$$-$$n\over2$$)$ $\longrightarrow$ $($$n-i$$>$$n-j$$\geq$$n$$-$$n\over2$$)$ $\longrightarrow$ $($$n-i$$>$$n-j$$\geq$$n\over2$$\geq$$j$$>$$i$$)$. This is where I got stuck when trying to prove:
$(n-i)$$!$$i$$!$ $>$ $(n-j)$$!$$j$$!$ since:
$n!\over{(n-i)!i!}$ $<$ $n!\over{(n-j)!j!}$ $\iff$ $(n-i)$$!$$i$$!$ $>$ $(n-j)$$!$$j$$!$