Consider a sequence of functions $(f_n)$ on a probability space $(X,\mu)$ such that
(i) $f_n \to f$ in $L^p$ for every $p\in [1,\infty)$
(ii) $f,f_1,f_2,\cdots\in L^\infty$ and they are uniformly bounded in $L^\infty$ by $\Lambda\in [0,\infty)$, i.e. $$\|f\|_\infty,\|f_1\|_\infty,\|f_2\|_\infty,\cdots\le \Lambda.$$
Does then $f_n\to f$ in $L^\infty$?