4

Consider a sequence of functions $(f_n)$ on a probability space $(X,\mu)$ such that

(i) $f_n \to f$ in $L^p$ for every $p\in [1,\infty)$

(ii) $f,f_1,f_2,\cdots\in L^\infty$ and they are uniformly bounded in $L^\infty$ by $\Lambda\in [0,\infty)$, i.e. $$\|f\|_\infty,\|f_1\|_\infty,\|f_2\|_\infty,\cdots\le \Lambda.$$

Does then $f_n\to f$ in $L^\infty$?

Ryan Unger
  • 3,506

1 Answers1

4

Let $t(x) = \max(0, 1-|x|)$, let $f_n(x) = t(nx+n)$. Then $f_n \to 0$ for $p < \infty$ but $\|f_n\|_\infty = 1$ for all $n$.

copper.hat
  • 172,524