Consider constructs as concrete categories (over $\mathbf S\mathbf e\mathbf t$):
$1)$ $\mathbf M\mathbf C\mathbf P\mathbf o\mathbf s$ (complete lattices and meet-preserving maps),
$2)$ the full subconstruct of $\mathbf A\mathbf l\mathbf g(\mathcal{P})$ consisting of those $\mathcal{P}-$algebras $(X,h)$ that satisfy the following two conditions:
a) $h(\{x\})=x$ for each $x\in X$,
b) $h(\cup\mathcal{A})=h(\{h(A)|A\in\mathcal{A})$ for each $\mathcal{A}\subseteq\mathcal{P}X$.
$\mathcal{P}:\mathbf S\mathbf e\mathbf t\rightarrow\mathbf S\mathbf e\mathbf t$ is covariant power-set functor defined by:
$\mathcal{P}(f:A\rightarrow B)=(\mathcal{P}f):\mathcal{P}A\rightarrow\mathcal{P}B$
where $\mathcal{P}A$ is the power-set of $A$ and for each $X\subseteq A$, $\mathcal{P} f(X)$ is the image $f[X]$ of $X$ under $f$.
How one needs to establish concrete isomorphism between such constructs?