1

Let $x_{1},......,x_{n}$ be a set of $n$ vectors over a real or complex field $F$ in $V.$ Consider the matrix

$$ \begin{pmatrix} \langle x_{1},x_{1} \rangle & \langle x_{2},x_{1} \rangle &.........&\langle x_{n},x_{1} \rangle \\ \langle x_{1},x_{2} \rangle & \langle x_{2},x_{2} \rangle &.........&\langle x_{n},x_{2} \rangle \\ &.......................&\\ \langle x_{1},x_{n} \rangle & \langle x_{2},x_{n} \rangle &.........&\langle x_{n},x_{n} \rangle \\ \end{pmatrix}.$$ Then

  1. $x_{1},......,x_{n}$ are Linearly independent iff $\det A=0$

  2. $x_{1},......,x_{n}$ are Linearly independent iff $\det A>0$

  3. $\det A \geq0,$ always

  4. $\det A\leq0,$ always

I think option 2 and 3 is correct but how can i approach this kind of question. thanks in advance.

Widawensen
  • 8,172
1256
  • 791
  • Related : https://math.stackexchange.com/questions/408307/proof-det-pmatrix-langle-v-i-v-j-rangle-neq0-iff-v-1-dots-v-n-t?rq=1 – pitchounet Oct 04 '17 at 11:20

0 Answers0