1

$\lim_{x\to 0} [\csc^22x-\frac 1 {4x^2}]\ $

and

$\lim_{x\to y} \frac {\tan x- \tan y} {1-\frac{x}{y}(\tan x\tan y+1)}\ $

We have not learn L'Hôpital's rule in my class, we do the $\lim_{x\to 0}\frac{\sin x}{x}=1\ $

I have not came up with anything yet

Henry
  • 157,058
Deep J
  • 61
  • The second limit does not pose any problem as you can just plug $x=y$ and get $0$ as the answer. The first limit requires the use of advanced tools like Taylor series or L'Hospital's Rule and it won't be possible to get an answer just using algebra of limits. So if you have not studied these advanced techniques then this exercise is misplaced. – Paramanand Singh Oct 03 '17 at 06:21

2 Answers2

2

HINT Put $u=2x$ so we have $$ \csc^2u-\frac 1 {u^2}=\frac{1}{\sin^2 u}-\frac 1 {u^2}=\frac{ (u+\sin u)(u−\sin u) }{u^2\sin^2u}=\left(1+\frac{\sin u}{u}\right)\frac{ u^2 }{\sin^2u}\frac{u-\sin u}{u^3} $$

Since $\lim_{u\to 0} \frac{\sin u}{u} = \lim_{u\to 0} \frac{u}{\sin u}= 1$ we just need to find $\lim_{u\to 0} \frac{u-\sin u}{u^3}$. This limit is $L=\frac 16$ (see below the link for a proof without derivatives or Taylor or l'Hopital). So the original limit is $$ \lim_{u\to 0}\csc^2u-\frac 1 {u^2}=\lim_{u\to 0}\left(1+\frac{\sin u}{u}\right)\frac{ u^2 }{\sin^2u}\frac{u-\sin u}{u^3}=2\cdot 1\cdot \frac 16=\frac 13 $$

See the answer for $\lim_{u\to 0}\frac{u-\sin u}{u^3}$

For the second limit use the following hint: $$ \frac {\tan x- \tan y} {1-\frac{x}{y}(\tan x\tan y+1)}=\frac{\tan(x-y)[\tan x\tan y+1]}{1-\frac{x}{y}(\tan x\tan y+1)} $$

alexjo
  • 14,976
0

Let's prove some double-sided estimate for $1/\sin^2 x-1/x^2$ giving the first limit, using only $\lim_{h\to0}\sin h/h=1$ and $\lim_{h\to0}\cos h=1$: $$\frac13\le\frac1{\sin^2 x}-\frac1{x^2}\le\frac1{3\cos^2 x/2}\tag1$$ for all $x\in(0,\pi)$.
Proof: We have $$\sin x=2\sin x/2\,\cos x/2,$$ implying $$\frac1{\sin^2 x}=\frac14\left(\frac1{\sin^2 x/2}+\frac1{\cos^2 x/2}\right)$$ Replacing $x$ by $x/2^k$ and multiplying by $4^{-k}$ gives $$\frac{4^{-k}}{\sin^2 x/2^k}-\frac{4^{-k-1}}{\sin^2 x/2^{k+1}}=\frac{4^{-k-1}}{\cos^2 x/2^{k+1}}$$ and thus (by monotony of $\cos x$) $$4^{-k-1}\le\frac{4^{-k}}{\sin^2 x/2^k}-\frac{4^{-k-1}}{\sin^2 x/2^{k+1}}\le\frac{4^{-k-1}}{\cos^2 x/2}$$ Summing from $k=0$ to $k=n-1$ gives $$\frac13(1-4^{-n})\le\frac1{\sin^2 x}-\frac{4^{-n}}{\sin^2 x/2^n}\le\frac{\frac13(1-4^{-n})}{\cos^2 x/2}$$ Now since $$\frac{4^{-n}}{\sin^2 x/2^n}=\frac1{x^2}\cdot\left(\frac{\sin x/2^n}{x/2^n}\right)^{-2},$$ letting $n\to\infty$ proves our claim (1). qed
It's clear that (1) together with the squeeze lemma means $$\lim_{x\to0}\left(\frac1{\sin^2 x}-\frac1{x^2}\right)=\frac13,$$ and that won't change if we replace $x$ by $2x$.