HINT
Put $u=2x$ so we have
$$
\csc^2u-\frac 1 {u^2}=\frac{1}{\sin^2 u}-\frac 1 {u^2}=\frac{ (u+\sin u)(u−\sin u) }{u^2\sin^2u}=\left(1+\frac{\sin u}{u}\right)\frac{ u^2 }{\sin^2u}\frac{u-\sin u}{u^3}
$$
Since $\lim_{u\to 0} \frac{\sin u}{u} = \lim_{u\to 0} \frac{u}{\sin u}= 1$ we just need to find $\lim_{u\to 0} \frac{u-\sin u}{u^3}$.
This limit is $L=\frac 16$ (see below the link for a proof without derivatives or Taylor or l'Hopital).
So the original limit is
$$
\lim_{u\to 0}\csc^2u-\frac 1 {u^2}=\lim_{u\to 0}\left(1+\frac{\sin u}{u}\right)\frac{ u^2 }{\sin^2u}\frac{u-\sin u}{u^3}=2\cdot 1\cdot \frac 16=\frac 13
$$
See the answer for $\lim_{u\to 0}\frac{u-\sin u}{u^3}$
For the second limit use the following hint:
$$
\frac {\tan x- \tan y} {1-\frac{x}{y}(\tan x\tan y+1)}=\frac{\tan(x-y)[\tan x\tan y+1]}{1-\frac{x}{y}(\tan x\tan y+1)}
$$