3

Find value of $$I=\int_{0}^{\frac{\pi}{2}} \log ^2(\sin x)dx \tag{1}$$

I tried using property $\int_{a}^{b} f(x)dx=\int_{a}^{b}f(a+b-x)dx$ we get

$$I=\int_{0}^{\frac{\pi}{2}}\log^2(\cos x)dx \tag{2}$$

Adding $(1)$ and $(2)$ we get

$$2I=\int_{0}^{\frac{\pi}{2}}\left(\log(\sin x)+\log(\cos x)\right)^2-2 \log(\sin x)\log(\cos x)dx$$

any clue here?

Umesh shankar
  • 10,219

0 Answers0