5

I'm told that intuitionistic logic is basically classical logic with "law of the excluded middle removed", and that you can't from $\neg \neg A$ infer $A$.

So, if we consider $A$ a state, $\neg A$ a state, and $\neg \neg A$ a state, does this mean that $\neg \neg \neg A$ is a separable state?

Kenny Lau
  • 25,049

5 Answers5

7

In addition to the two very nice formal answers, let me give an informal proof that $\neg\neg\neg A \Rightarrow \neg A$. Recall that, by definition, $\neg B$ is an abbreviation for $B \Rightarrow \bot$.

Assume $\neg\neg\neg A$. We are to show $\neg A$, that is, $A \Rightarrow \bot$.

So assume $A$, we are to show $\bot$.

Since $A$, we have $\neg\neg A$. But we also have $\neg(\neg\neg A)$. Hence $\bot$.

This proof uses the lemma that $A \Rightarrow \neg\neg A$. This lemma can also be proven informally:

Assume $A$. We are to show $\neg\neg A$, that is, $(\neg A) \Rightarrow \bot$.

So assume $\neg A$. We are to show $\bot$.

Since $\neg A$ (which means $A \Rightarrow \bot$) and since $A$, we have $\bot$.

By the way, at no point did we use the principle of explosion (ex falso quodlibet). Hence our proofs are even valid in minimal logic, where $\bot$ doesn't have any special rules attached to it.

6

No, $\neg \neg \neg A$ is equivalent to $\neg A$.

Given $\neg\neg\neg A$:

1. $\neg \neg \neg A$ (premise)

2.1. $A$ (assumption)

2.2.1. $\neg A$ (assumption)

2.2.2. $A$ (reiterate 2)

2.2.3. $\bot$ (contradiction 4 3)

2.3. $\neg\neg A$ ($\neg$intro 2.2.1-2.2.3)

2.4. $\neg\neg\neg A$ (reiterate 1)

2.5. $\bot$ (contradiction 2.3 2.4)

3. $\neg A$ ($\neg$intro 2.1-2.5)

Given $\neg A$:

1. $\neg A$ (premise)

2.1. $\neg \neg A$ (assumption)

2.2. $\neg A$ (reiterate 1)

2.3. $\bot$ (contradiction 2.2 2.1)

3. $\neg\neg\neg A$ ($\neg$intro 2.1-2.3)

Kenny Lau
  • 25,049
5

Triple negation $\neg \neg \neg P $ is a shorthand for $((P \rightarrow \bot) \rightarrow \bot) \rightarrow \bot$. It turns out however that for any pair of propositions $P$ and $Q$, we have that $((P \rightarrow Q) \rightarrow Q) \rightarrow Q$ simplifies to $P \rightarrow Q$, which lets us simplify triple negation to $P \rightarrow \bot$ which is just the definition of $\neg P$.

To prove this, just note that by modus ponens, we have $P \rightarrow ( (P \rightarrow Q) \rightarrow Q)$, for any P, Q. But we note that the RHS of that is equal to the LHS of $((P \rightarrow Q) \rightarrow Q) \rightarrow Q$ , so we can just compose the two implications to get $P \rightarrow Q$. This holds for any logic with modus ponens and transitive implication.

saolof
  • 639
4

It is standard to identify $\lnot A$ with $A \to \bot$ in intuitionistic logic. The $\lambda$-term $\lambda f^{((A\to B)\to B) \to B}{\cdot} \lambda a^{A}{\cdot} f(\lambda g^{A \to B}{\cdot} g(a))$ corresponds to a proof of $(((A \to B) \to B) \to B) \to (A \to B)$ under the Curry-Howard Correspondence. Instantiating $B$ to $\bot$ gives you a proof that $\lnot\lnot\lnot A \to \lnot A$.

The proof of the converse proposition $(A \to B) \to (((A \to B) \to B) \to B)$ is witnessed by $\lambda f^{A\to B}{\cdot}\lambda g^{(A \to B) \to B}{\cdot}g(f)$

Rob Arthan
  • 48,577
  • It's been 6 years, but I note a typo. Your first type annotation only denotes what $f$ eats, not what it returns. Indeed you can write $\lambda f^{((A\to B)\to B)\to C}$, proving $[((A\to B)\to B)\to C]\to [A\to C]$, a contraposition of modus ponens in the form $A\to ((A\to B)\to B)$. – Nikolaj-K Dec 10 '23 at 00:36
  • @Nikolaj-K: thank you - I've fixed the typo.You are right that there is a more general typing, but the one with just $A$ and $B$ is what I intended. – Rob Arthan Dec 10 '23 at 22:07
0

For a quick proof that $\neg \neg \neg A$ is the same as $\neg A$, first show that $B \to \neg \neg B$.

For the first part, substitute $A$ for $B$ to get $A \to \neg \neg A$. Then using contravariance of $\neg$, we have $\neg \neg \neg A \to \neg A$. The contravariance of $\neg$ is the property that if $C \to D$, then $\neg D \to \neg C$.

For the second part, substitute $\neg A$ for $B$, to get that $\neg A \to \neg \neg \neg A$.

Thus, $\neg A$ and $\neg \neg \neg A$ are logically equivalent.

Mark Saving
  • 31,855