Let $\{a_n\}_{n\geq0}$ is a sequence of complex numbers such that $\frac{a_0+\cdots+a_n}{n+1}$ converges to $a$. Suppose also that $\exists M>0$ such that $n|a_{n}-a_{n-1}|<M$ for all $n\geq 1$. Then show that $a_n$ converges to $a$.
N.B. I started with denoting $b_{n}=a_{n}-a_{n-1}$ then $n|b_n|<M$ and $s_n=\frac{a_0+\cdots+a_n}{n+1}$ then $a_{n}-s_{n}=\frac{(n+1)a_{n}-a_{n}-\cdots-a_0}{n+1}=\frac{na_n-a_{n-1}-\cdots-a_0}{n+1}=\frac{nb_n+(n-1)a_{n-1}-a_{n-2}-\cdots-a_0}{n+1}=\cdots=\frac{nb_n+(n-1)b_{n-1}+\cdots+b_1}{n+1}$
which implies $|a_n-s_n|\leq\frac{Mn}{n+1}\to M$. But this only shows $a_n$ is bounded. Now employing Bolzano-Weierstrass Theorem we see $\exists \{a_{n_k}\}_{k\geq 1}$ which converges . From here I have no idea. How to show $a_n\to a$.
$$ \lim a_{n_{k_l}} =a $$
then we are done.
– Severin Schraven Oct 01 '17 at 19:03