2

Let $\{a_n\}_{n\geq0}$ is a sequence of complex numbers such that $\frac{a_0+\cdots+a_n}{n+1}$ converges to $a$. Suppose also that $\exists M>0$ such that $n|a_{n}-a_{n-1}|<M$ for all $n\geq 1$. Then show that $a_n$ converges to $a$.

N.B. I started with denoting $b_{n}=a_{n}-a_{n-1}$ then $n|b_n|<M$ and $s_n=\frac{a_0+\cdots+a_n}{n+1}$ then $a_{n}-s_{n}=\frac{(n+1)a_{n}-a_{n}-\cdots-a_0}{n+1}=\frac{na_n-a_{n-1}-\cdots-a_0}{n+1}=\frac{nb_n+(n-1)a_{n-1}-a_{n-2}-\cdots-a_0}{n+1}=\cdots=\frac{nb_n+(n-1)b_{n-1}+\cdots+b_1}{n+1}$

which implies $|a_n-s_n|\leq\frac{Mn}{n+1}\to M$. But this only shows $a_n$ is bounded. Now employing Bolzano-Weierstrass Theorem we see $\exists \{a_{n_k}\}_{k\geq 1}$ which converges . From here I have no idea. How to show $a_n\to a$.

Alex Ravsky
  • 90,434
mudok
  • 751
  • 6
  • 18

1 Answers1

2

Assume not. Then there exists $\epsilon>0$ such that for infinitely many $n$, $|a_n-a|>\epsilon$. Say, we have $a_n>a+\epsilon$ (the case $a_n<a-\epsilon$ is similar). Then we still have $a_{n+k}-a>\frac\epsilon 2$ for $0\le k\le m:=\lfloor \frac{\epsilon n}{2M}\rfloor $. Therefore, $$ |a_1+\ldots+ a_{n+m}-(n+m)a|\ge m\epsilon-|a_1+\ldots+a_n-na|$$ or after division by $n+m$, $$ |s_{n+m}-a|\ge \frac{m}{n+m}\epsilon -\frac n{n+m}|s_n-a|$$ so that $$ |s_{n+m}-a|+|s_n-a|\ge \frac m{m+n}(\epsilon-|s_n-a|).$$ As $n\to \infty$, the left hand side tends $\to 0$ and the right hand side $\to \frac{\epsilon^2}{2M+\epsilon}$, contradiction.