Suppose $z_0 \in \mathbb{C}$ , $r>0$,
Let $C$ be the line segment from $z_0+r-ir$ to $z_0+r+ir$.
A parametrization of the smooth curve $C$ is
$z(t) = z_0 + r + i(2rt-r)$, $t\in[0,1]$
and $z'(t)=2ri$.
Then, $\int_{C} (z-z_0)^n dz = \int_{0}^{1} [r+i(2rt-r)]^n 2r$ $dt$. $(n\in \mathbb{Z})$
I need help on further evaluating the integral. (for $n\neq -1$ and $n=-1$)