Prove that $$\lim\limits_{n \to \infty}\frac1n \sum\limits_{k=1}^nn^{1/k}=2$$
How to estimate the sum? I tried to use Stolz's theorem but it is still a similar summation.
Prove that $$\lim\limits_{n \to \infty}\frac1n \sum\limits_{k=1}^nn^{1/k}=2$$
How to estimate the sum? I tried to use Stolz's theorem but it is still a similar summation.
Hint:
Using the arithmetic-geometric mean inequality
$$1 \leqslant n^{1/k} = (\underbrace{1 \cdot 1 \cdots 1}_{\text{k-2 times}} \sqrt{n} \sqrt{n})^{1/k} \leqslant \frac{1}{k} (k-2 + 2\sqrt{n}) = 1 + \frac{2(\sqrt{n}-1)}{k}$$
Sum on $2\leqslant k\leqslant n$ and apply the squeeze theorem.