I'm trying to show that $\sum_{n=-\infty}^{\infty}\frac{(-1)^n}{(n-\alpha)^2}=\pi^2\csc \pi \alpha \cot \pi \alpha$ for $0<\alpha<1$. The method that I decided to use is contour (square) integrals and the residue theorem.
Progress
I noticed that $f(z)=\frac{1}{z^2\sin\pi(z+\alpha)}$ has poles at $z=0, k-\alpha, k\in \mathbb{Z}$ with residues $$\mbox{res}(f(z);0)=-\pi \cot (\pi \alpha) \csc( \pi \alpha) \\ \mbox{res}(f(z);k-\alpha)=\frac{(-1)^k}{\pi(k-\alpha)^2}$$ which one can obtain by simply calculating. So then I considered a path $\Gamma_N$ defined by a square with vertices at $N(1, i), N(1, -1), N(-1, i), N(-1, -i)$, $N \in \mathbb{N}$. So if we let $a_k$ be the list of poles of $f$ inside the region formed by $\Gamma_N$, by the residue theorem, we get:
$$\begin{align*} \oint_{\Gamma_N}f(z)dz &= 2\pi i\sum_{a_i} \mbox{res}(f(z);a_k) \\ &= 2\pi i \left[ -\pi \cot (\pi \alpha) \csc( \pi \alpha)+\sum_{n=-N+1}^N \frac{(-1)^n}{\pi(n-\alpha)^2}\right] \\ &\to 2\pi i \left[ -\pi \cot (\pi \alpha) \csc( \pi \alpha)+\sum_{-\infty}^{\infty} \frac{(-1)^n}{\pi(n-\alpha)^2}\right] \end{align*}$$
Now, supposing $\oint_{\Gamma_N}f(z)dz \to 0$, we get $$0=-\pi \cot (\pi \alpha) \csc( \pi \alpha)+\sum_{-\infty}^{\infty} \frac{(-1)^n}{\pi(n-\alpha)^2}$$ and then we're done.
But I cannot seem to prove that $\oint_{\Gamma_N}f(z)dz \to 0$. I'm pretty sure the Estimation Lemma is used here, but I am not sure how to go about it. Is this even true? Are there any other ways of proving it?