I'm trying to solve by Wilson's theorem.
My attempt
$437 = 19 \cdot 23$
$18!\equiv -1$ $\pmod {19}$
$22!\equiv -$1 $\pmod {23}$
I'm stuck here, I don't know how to combine these 2 informations to solve the problem.
edit
$22 \cdot 21 \cdot 20 \cdot 19 \cdot 18!$ $\equiv$ $-1$ $\pmod {23}$
$(-1)\cdot(-2)\cdot(-3)\cdot(-4)\cdot(18!) \equiv -1$ $\pmod {23}$
$18! \equiv -1$ $\pmod {23}$
\pmod
,\cdot
and using$$
for display-style math. – gen-ℤ ready to perish Sep 29 '17 at 04:23