I was looking for the proof of $\frac{\mathrm{d}}{\mathrm{d}x}a^x$ as the $\lim_{h\to0}\frac{a^{x+h}-a^{x}}{h}$ which is $a^x\lim_{h\to0}\frac{a^{h}-1}{h}$. To solve that, I need to know the $\lim_{h\to0}\frac{a^{h}-1}{h}$.
In terms of $t$
I defined $\frac{1}{t}=a^h-1=e^{h\ln(a)}-1$, therefore $e^{h\ln(a)} = 1+\frac{1}{t}$ and $h=\frac{\ln\left (1+\frac{1}{t} \right )}{\ln(a)}$.
When $h\to0$, $t\to\infty$.
$$\begin{aligned}\lim_{h\to0}\frac{a^{h}-1}{h}&=\lim_{t\to\infty}\frac{\frac{1}{t}}{\frac{\ln\left (1+\frac{1}{t} \right )}{\ln(a)}}\\ &=\lim_{t\to\infty}\frac{\ln(a)}{t\cdot \ln\left (1+\frac{1}{t} \right )}\\ &=\lim_{t\to\infty}\frac{\ln(a)}{\ln\left (\left (1+\frac{1}{t} \right )^t \right )}\\ &=\frac{\ln(a)}{\ln\left ( \lim_{t\to\infty}\left (1+\frac{1}{t} \right )^t \right )}\end{aligned}$$
In terms of $n$
Now, I need to solve the limit $\lim_{t\to\infty}\left (1+\frac{1}{t} \right )^t$. I defined $t=\frac{1}{n}$.
When $t\to\infty$, $n\to0$.
$$\begin{aligned}\lim_{t\to\infty}\left (1+\frac{x}{t} \right )^t&=\lim_{n\to0}\left (1+\frac{n}{\frac{1}{x}} \right )^\frac{1}{n}\\ &=\lim_{n\to0}\left (\frac{\frac{1}{x}+n}{\frac{1}{x}} \right )^\frac{1}{n}\\ &=e^{\lim_{n\to0}\ln\left (\frac{\frac{1}{x}+n}{\frac{1}{x}} \right )^\frac{1}{n}}\\ &=e^{\lim_{n\to0}\frac{\ln\left (\frac{\frac{1}{x}+n}{\frac{1}{x}} \right )}{n}}\\ &=e^{\lim_{n\to0}\frac{\ln\left ( \frac{1}{x}+n \right )-\ln\left ( \frac{1}{x} \right )}{n}}\\ &=e^{\frac{\mathrm{d}}{\mathrm{d}\frac{1}{x}}\ln\left ( \frac{1}{x} \right )}\end{aligned}$$
Now I tried to solve $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{\frac{\mathrm{d}}{\mathrm{d}\ln(x)}x}=\frac{1}{\frac{\mathrm{d}}{\mathrm{d}\ln(x)}e^{\ln(x)}}$.
And I get back to $\frac{\mathrm{d}}{\mathrm{d}x}a^x$, when $a = e$.
Is there a way to solve one of the limits or the derivatives in another way that does not create a loop?
Note that I can't use L'Hopital rule, since I did now proof the derivatives.
Thanks.